
Introduction to Reinforcement Learning

Chao Tao

Jan. 17, 2020

1 Learning Setup

Reinforcement Learning (RL) has many real-world applications. Recently, famous applications include

• Games: AlphaGo ([7]), AlphaStar ([9]),

• Robotics: solve rubik’s cube with a robot hand ([1]),

• AutoML: neural architecture search ([8]),

to name a few.
Intuitively, RL is about learning to collect the maximum rewards through interactions with poorly un-

derstood environments. The environment is usually modeled as a Markov Decision Process (MDP). A MDP
is made up of four elements i.e., state S , action A, transition probability P and reward function R, where
P(s′ | s, a) and R(s, a) represent the probability of transitioning to state s′ and the reward at state s when
action a is taken respectively. Note that the definition implies that in every state s ∈ S, there are |A| avail-
able actions to take. After the definition of the environment, we can use the following diagram to describe a
RL problem.

MDPlearner

st, at

rt

Figure 1: Learner-Environment Interface

Usually, in a RL problem, a learner interacts with the MDP in steps. In each time step t, the learner
observes the state st of the MDP and then takes an action at after which he/she will receive an immediate
reward rt.

For simplicity, we only consider the case when both of |S| and |A| are finite (or tabular in other words).
There are some works considering extending tabular MDP to the infinite case, which is beyond the scope
of our discussion. Apart from that, we also assume the reward function R and the initial state s1 are
deterministic.

According to the mathematical formulation of the goal, we divide RL problems into three different
categories.

1

1.1 Infinite Discounted MDP

An instance of this kind of problems can be represented by a 6-tuple (S,A,P, R, γ, s1) where S,A,P and
R share the same definition as a MDP, γ ∈ (0, 1) is the discount factor and s1 is the initial state.

The goal is to find an algorithm or policy π to be equipped by the learner such that the expected total
rewards

E

[
+∞∑
t=1

γt−1Rπ(st, at)

]
is maximized, where the superscript π is used to denote that the action is taken according to policy π. When
it clear from the context, we usually omit the superscript.

1.2 Infinite Undiscounted MDP

An instance of this kind of problems can be represented by a 5-tuple (S,A,P, R, s1) where both of the
notations share the same meaning as before.

The goal is to find an algorithm or policy π to be equipped by the learner such that the expected average
rewards

E

[
lim inf
T→+∞

1

T

T∑
t=1

Rπ(st, at)

]
is maximized.

1.3 Episodic MDP

An instance of this kind of problems can be represented by a 6-tuple (S,A,P, R,H, s1) where H means
after each H time steps the MDP will restart from the initial state s1 and other notations share the same
meanings as before.

The goal is to find an algorithm or policy π to be equipped by the learner such that after T = KH time
steps, the expected total rewards

E

[
K∑
k=1

H∑
h=1

Rπ(sk,h, ak,h)

]
is maximized, where sk,h and ak,h denote the state and the action at tth time step. In episodic MPD, we
usually add a redundant state sk,H+1 to denote the next state after action ak,H .

2 Optimality

Take an infinite discounted MDP as an example, in general, the optimal action at+1 may depend on the
whole history i.e.,Ht

def
= (s1, a1, . . . , st, at, st+1) and/or some external randomness. Fortunately, there is no

harm to the final goal if we only consider some restricted policy.
Let us first introduce some concepts. We call a policy is Markov if it only considers the last state. A

policy is called stationary if the policy does not change with time. A deterministic policy is such that the
action to be taken is deterministic.

After the knowledgement of the aforementioned concepts, we are ready to introduce the following the-
orems.

2

Theorem 1. For infinite discounted/undiscounted MDPs, there always exists a stationary, deterministic and
Markov policy that is optimal for all starting states simultaneously

Proof. For the infinite discounted MDP case, please refer to Theorem 6.2.7 of [6] (reference due to Shipra
Agrawal). For the undiscounted case, please refer to the optimality criteria section in [3].

Theorem 2 ([2]). For episodic MDPs, there always exists a deterministic and Markov policy that is optimal
for all starting states simultaneously

Remark 3. This theorem implies that the optimal policy may be different for different time steps within one
episode.

3 Bellman Equations

From now on, we are assuming the problem we are facing is an infinite discounted MDP and the optimal
policy is Markov, stationary and deterministic. For other settings, the corresponding results are similar.

3.1 Value Functions

Given a policy π, we call V π(·) : S → R the state-value function where V π(s) denotes the expected rewards
at state s when the learner follows policy π. We also call Qπ(·, ·) : S × A → R the state-action-value or
Q-value function where Qπ(s, a) denotes the expected rewards at state s when the learner first takes action
a and follows policy π afterwards. We use π∗ to denote the optimal policy. And we use V ∗(·) and Q∗(·, ·)
to denote its state-value function and Q-value function respectively.

3.2 Bellman Expectation Equations

For any policy π, we have the following Bellman Expectation Equations holds

V π(s) = R(s, π(s)) + γ ·
∑
s′∈S

P(s′ | s, π(s))V π(s′),

and
Qπ(s, a) = R(s, a) + γ ·

∑
s′∈S

P(s′ | s, a)Qπ(s, π(s′)).

3.3 Bellman Optimality Equations

For the optimal policy π∗, we have the following Bellman Optimality Equations holds

V ∗(s) = max
a∈A

{
R(s, a) + γ ·

∑
s′∈S

P(s′ | s, a)V ∗(s′)

}
,

and
Q∗(s, a) = R(s, a) + γ ·

∑
s′∈S

P(s′ | s, a)max
b∈A

Q∗(s′, b).

3

4 State Occupancy

Let V π be the column vector [V π(s)]Ts∈S , Rπ be the column vector [R(s, π(s))]Ts∈S and Pπ be the matrix
[P(s′|s, π(s))]s∈S,s′∈S . Then according to Bellman Equation, we have

V π = Rπ + γPπV π. (1)

Lemma 4. There always exists a solution i.e., V π to (1).

Proof. Rewrite (1), we obtain (I − γPπ)V π = Rπ. It suffices to prove matrix I − γPπ is invertible. Let x
be an arbitrary vector. Note that

(I − γPπ)x = 0

⇔ x = γPπx
⇒ ‖x‖∞ = ‖γPπx‖∞ ≤ γ ‖x‖∞
⇒ (1− γ) ‖x‖∞ ≤ 0

⇒ x = 0,

which completes the proof.

Hence V π = (I − γPπ)−1Rπ = (I +
∑+∞

t=1 (γPπ)t)Rπ, from which we derive that

V π(s) =
∑
s′∈S

(
+∞∑
t=1

γt−1Pr(st = s′ | s1 = s)

)
R(s′, π(s′)),

=
∑
s′∈S

dπs (s
′)R(s′, π(s′)),

where we have defined dπs
def
= [
∑+∞

t=1 γ
t−1Pr(st = s′ | s1 = s)]Ts′∈S , which is called discounted state

occupancy vector. And we also define ηπs = (1 − γ)dπs and call it state occupancy vector. Both dπs and ηπs
notations come from Lecture 1 of [4].

5 Q-learning

Suppose the transition probability P is not known beforehand, how should the learner behave and what is the
best he/she can do? The high level idea is to estimateQ∗-value function, and then behave greedily according
to the estimated Q̃-value function. But then how to get a good estimate of Q∗-value function? Recall the
online version of mean estimation

Xt =

∑t
i=1Xi

t
= Xt−1 +

1

t
· (Xt −Xt−1),

where Xt is an unbiased estimation of X . Similarly, we want to estimate Q̃t(x, a) using Q̃t−1(x, a). Hence
the new update rule becomes

Q̃t+1(xt, at) = Q̃t(xt, at) + α · (XQ∗(xt,at) − Q̃t(xt, at)),

4

where α is the so-called learning rate and XQ∗(xt,at) denotes an unbiased estimation of Q∗(xt, at). How-
ever, it is hard to get XQ∗(xt,at). In Q-learning, it uses R(xt, at) + γ ·maxa∈A Q̃t(xt+1, a) to approximate
XQ∗(xt,at). The details are shown in the following Algorithm 1.

Algorithm 1: Q-learning

1 initialization: Q̃t(x, a) = 0 for every (x, a) ∈ S ×A
2 for time t = 1 to +∞ do
3 if t > 1 then
4 call Algorithm 2 to compute Q̃t(·, ·) and Ṽt(·)
5 observe state xt
6 take action at = argmaxa∈AQ̃t(xt, a)

Algorithm 2: Computation of Q̃t(·, ·) and Ṽt(·)
1 for every state-action pair (x, a) do
2 if (x, a) = (xt−1, at−1) then
3 Q̃t(x, a) = Q̃t−1(x, a) + αt(x, a)(R(x, a) + γṼt−1(xt)− Q̃t−1(x, a))
4 else
5 Q̃t(x, a) = Q̃t−1(x, a)

6 for every state x ∈ S do
7 Ṽt(x) = maxa∈A Q̃t(x, a)

Here αt(x, a) is the learning rate. Note that when (x, a) 6= (xt−1, at−1) at time t, αt(x, a) = 0.

Theorem 5. When
∑+∞

t=1 αt(x, a) = +∞ and
∑+∞

t=1 αt(x, a)
2 < +∞ for all (x, a) ∈ S × A, it can be

guaranteed that in Algorithm 1, Q̃t converges to Q∗ in probability.

Proof. See [5].

Remark 6. To apply Theorem 5 i.e., to prove thatQ-learning algorithm converges, we must set the learning
rate such that each state-action pair (x, a) is visited infinitely often.

References

[1] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur Petron,
Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube with a robot
hand. arXiv preprint arXiv:1910.07113, 2019.

[2] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement
learning. In ICML, pages 263–272, 2017.

[3] Eugene A. Feinberg and Jefferson Huang. On the reduction of total-cost and average-cost mdps to
discounted mdps. Naval Research Logistics (NRL), 66(1):38–56, 2019.

[4] Nan Jiang. Cs 598 statistical reinforcement learning, 2019.

5

[5] Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of Systems and Robotics, Tech.
Rep, pages 1–4, 2001.

[6] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., USA, 1st edition, 1994.

[7] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

[8] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and Quoc V
Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[9] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Wojciech M Czar-
necki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al. Alphastar: Mastering the
real-time strategy game starcraft ii. DeepMind blog, page 2, 2019.

6

	Learning Setup
	Infinite Discounted MDP
	Infinite Undiscounted MDP
	Episodic MDP

	Optimality
	Bellman Equations
	Value Functions
	Bellman Expectation Equations
	Bellman Optimality Equations

	State Occupancy
	Q-learning

