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1 Problem Setup

There is a tabular episodic MDP M = (S,A,P, R,H, s1) where we assume the reward function R is
bounded within [0, 1] and for simplicity we also assume R is deterministic. In other words, only the tran-
sition probability P is unknown. We want to find a policy such that the expected regret incurred by this
policy after K episodes is minimized. Given a policy π = (π1, . . . , πK), the regret incurred by this policy
is defined by

RπK
def
=

K∑
k=1

(V ∗1 − V
πk
1 )(xk,1),

where V denotes the value function and the initial state xk,1 can be either randomized or adversarial.

Remark 1. There exists an optimal policy which is Markov and deterministic (may depend on time t ∈ [H]).
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2 Notations and Definitions

[n] {1, 2, . . . , n}
A action space
A |A|
S state space
S |S|
H horizon
K # of episodes
T HK
R : S ×A → [0, 1] known reward function
P : S ×A → ∆(S) transition probability of the underlying MDP
π = (π1, . . . , πK) an arbitrary policy where πk is the policy in the kth episode
Qπkh : S ×A → R Q-value function of policy πk starting from time h
V πk
h : S → R value function of policy πk starting from time h
Q∗h Q-value function of the optimal policy starting from time h
V ∗h value function of the optimal policy starting from time h
xk,1 initial state of the kth episode
(xk,h, ak,h) state-action pair at the hth time step of the kth episode
Hk history before the kth episode (x1,1, a1,1, . . . , x1,H+1, . . . , xk−1,1, ak−1,1 . . . , xk−1,H+1)
nk : S ×A → N number of hits of state-action pair before the kth episode
nk(y | x, a) number of hits of state y when taking action a at state x before the kth episode
P̂k empirical transition probability usingHk
Q̃k,h estimate of the optimal Q-value function starting from the hth step of the kth episode
Ṽk,h estimate of the optimal value function starting from the hth step of the kth episode
ρ an arbitrary transition probability
V an arbitrary value function
(ρV )(x, a)

∑
y∈S ρ(y | x, a)V (y)

RπK regret incurred by policy π
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3 Algorithm

Algorithm 1: UCBVI-CH ([1])

1 initialization: Q̃1,h(x, a) = H − h+ 1 for every (h, x, a) ∈ [H]× S ×A
2 for episode k = 1 to K do
3 if k > 1 then
4 call Algorithm 2 to compute Q̃k,·(·, ·) and Ṽk,·(·)
5 for step h = 1 to H do
6 observe state xk,h
7 take action ak,h = argmaxa∈AQ̃k,h(xk,h, a)

Algorithm 2: Computation of Q̃k,·(·, ·) and Ṽk,·(·)

1 initialization: Q̃k,H+1(x, a) = Ṽk,H+1(x, a) = 0 and P̂k(y | x, a) = nk(y | x,a)
nk(x,a)

for every
(x, a, y) ∈ S ×A× S

2 for step h = H downto 1 do
3 for every state-action pair (x, a) do
4 if (x, a) = (xk−1,h, ak−1,h) then
5 let bk(x, a) = c1H

√
ln(SAT/δ)
nk(x,a)

6 Q̃k,h(x, a) = R(x, a) + (P̂kṼk,h+1)(x, a) + bk(x, a)

7 else
8 Q̃k,h(x, a) = Q̃k−1,h(x, a)

9 for every state x ∈ S do
10 Ṽk,h(x) = min{H + 1− h,maxa∈A Q̃k,h(x, a)}

Here c1 is a constant which will be defined when event E1 is defined.

Remark 2. Algorithm 1 needs to know the horizon T .

4 Proofs

4.1 Favorable Events

4.1.1 E1

Given any (x, a, t) ∈ S ×A× [T ], define i.i.d. random variables Xx,a
1 , . . . , Xx,a

t following the distribution
P(x, a). Let

E1
def
=

∀(h, x, a, t) ∈ [H]× S ×A× [T ],

∣∣∣∣∣∣
∑t

i=1 V
∗
h (Xx,a

i )

t
−
∑
y∈S

P(y | x, a)V ∗h (y)

∣∣∣∣∣∣ ≤ c1H
√

ln(SAT/δ)

t

 ,

where c1 is a constant which will be defined later.
By Hoeffding’s inequality (Lemma 12) and a union bound, there exists a constant c1 such that Pr(E1) ≥

1− δ/4.
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4.1.2 E2

Given any (x, a, y, t) ∈ S × A × S × [T ], suppose i.i.d. random variables Xx,a,y
1 , . . . , Xx,a,y

t follow the
Bernoulli distribution B(P(y | x, a)). Let

E2
def
=

{
∀(x, a, y, t) ∈ S ×A× S × [T ] satisfying P(y | x, a)t ≥ c2H2 ln(SAT/δ),

∑t
i=1X

x,a,y
i

t
≤ (1 + 1/H)P(y | x, a)

}
,

where c2 is a constant which will be defined later.
By Multiplicative Chernoff bound (Lemma 13) and a union bound, there exists a constant c2 such that

Pr(E2) ≥ 1− δ/4.

4.1.3 E3

Given any (x, a, y, t) ∈ S × A × S × [T ], suppose i.i.d. random variables Xx,a,y
1 , . . . , Xx,a,y

t follow the
Bernoulli distribution B(P(y | x, a)). Let

E3
def
=

{
∀(x, a, y, t) ∈ S ×A× S × [T ] satisfying P(y | x, a)t ≤ c2H2 ln(SAT/δ),

∑t
i=1X

x,a,y
i

t
≤ c3H ln(SAT/δ)

t

}
,

where c3 is a constant which will be defined later.
By Bernstein’s inequality (Lemma 14) and a union bound, there exists a constant c3 such that Pr(E3) ≥

1− δ/4.
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4.2 Main Theorem

Theorem 3. With probability at least 1− δ, the regret incurred by Algorithm 1 is bounded by

O

(
H
√
SAT ln(SAT/δ) +H2S2A ln

(
T

SA

)
ln(SAT/δ)

)
.

Remark 4. When T is large, with probability at least 1− δ, the regret is bounded by Õ(H
√
SAT ).

Corollary 5. There exists an algorithm who does not need to know the horizon T and its expected regret is
bounded by Õ(H

√
SAT ).

Proof. We leverge doubling trick to design the new algorithm. Denote Algorithm 1 by A(δ, T ). Since we do
not know the horizon, a good strategy is to guess. Specifically, we divide the whole time steps into several
episodes and in episode i, run A(1/2i, 2i) for 2i steps. The algorithm continues until the end of the horizon.

Now we analyze the regret. It is easy to see the expected regret of episode i is upper bounded by
Õ(H

√
SA2i). Let I be the minimum integer such that

∑I
i=1 2i ≥ T . And we have 2I ≤ T + 2. Hence the

total expected regret is upper bounded by
I∑
i=1

Õ(H
√
SA2i) = Õ(H

√
SA2I) = Õ(H

√
SAT ).

Remark 6. The optimal upper bound is Õ(
√
HSAT ) [1]. And the lower bound is Ω(

√
HSAT ) [3].

Proof. The following arguments are conditioned on event E def
= E1 ∧ E2 ∧ E3 ∧ E4, where E4 is defined later.

And for simplicity, we use π = (π1, . . . , πK) to represent Algorithm 1.
We first prove that the estimated Q-value function Q̃k,h is optimistic.

Lemma 7. For every (k, h, x, a) ∈ [K]× [H]× S ×A, it holds that

Q̃k,h(x, a) ≥ Q∗h(x, a).

Corollary 8. For every (k, h, x) ∈ [K]× [H]× S , it holds that Ṽk,h(x) ≥ V ∗h (x).

Proof. Fix (k, h, x, a) and note that

Q̃k,h(x, a)−Q∗h(x, a) = (P̂kṼk,h+1)(x, a)− (PV ∗h+1)(x, a) + bk(x, a)

= (P̂k(Ṽk,h+1 − V ∗h+1))(x, a) + ((P̂k − P)V ∗h+1)(x, a) + bk(x, a)

By event E1, we have |(P̂k − P)V ∗h+1(x, a)| ≤ bk(x, a). Using mathematical induction, we prove this
lemma.

With optimistic guarantee, we can give a direct upper bound ofRπK . Note that

RπK =
K∑
k=1

(V ∗1 − V
πk
1 )(xk,1)

≤
K∑
k=1

(Ṽk,1 − V πk
1 )(xk,1)

=
K∑
k=1

δ̃k,1.
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where we have defined δ̃k,h
def
= (Ṽk,h − V πk

h )(xk,h).
The next step idea is to rewrite δ̃k,h using δ̃k,h+1 and then use recursion to calculate an upper bound of∑K
k=1 δ̃k,h. We first show

Lemma 9.

δ̃k,h = ((P̂k−P)Ṽk,h+1)(xk,h, ak,h) + ((P(Ṽk,h+1−V πk
h+1))(xk,h, ak,h)− δ̃k,h+1) + δ̃k,h+1 + bk(xk,h, ak,h)

The idea to write in this way is that the expectation of (P(Ṽk,h+1 − V πk
h+1))(xk,h, ak,h) − δ̃k,h+1 is 0

conditioned on historyHk, xk,1, ak,1, . . . , xk,h.

Proof. Just note that

δ̃k,h = Ṽk,h(xk,h)− V πk
h (xk,h)

= (P̂kṼk,h+1)(xk,h, ak,h)− (PV πk
h+1)(xk,h, ak,h) + bk(xk,h, ak,h)

= ((P̂k − P)Ṽk,h+1)(xk,h, ak,h) + ((P(Ṽk,h+1 − V πk
h+1))(xk,h, ak,h)− δ̃k,h+1) + δ̃k,h+1 + bk(xk,h, ak,h)

We next focus on bounding
((P̂k − P)Ṽk,h+1)(xk,h, ak,h) (1)

and show

Lemma 10 (One Step Transition Probability Error).

(1) ≤ 1

H
δ̃k,h+1 + c1H

√
ln(SAT/δ)

nk(xk,h, ak,h)

+
1

H

(
(P(Ṽk,h+1 − V πk

h+1))(xk,h, ak,h)− δ̃k,h+1

)
+

max{c2, c3}H2S ln(SAT/δ)

nk(xk,h, ak,h)
.

Remark 11. There exists an easier way to bound (1) which leavages Hölder’s inequality to derive

(1) ≤
∥∥∥(P̂k − P)(xk,h, ak,h)

∥∥∥
1
·
∥∥∥Ṽk,h+1

∥∥∥
∞

and then uses the inequality in [4] to bound the `1-norm deviation of the transition probability. Using this
method will lead to an extra

√
S in the final conclusion.

Proof. Rewrite (1) we have

(1) = ((P̂k − P)V ∗h+1)(xk,h, ak,h)︸ ︷︷ ︸
(I)

+ ((P̂k − P)(Ṽk,h+1 − V ∗h+1))(xk,h, ak,h)︸ ︷︷ ︸
(II)

(2)

Consider (I) first. Note that

(I) =
∑
y∈S

(
P̂k(y | xk,h, ak,h)− P(y | xk,h, ak,h)

)
V ∗h+1(y)

=

∑
y∈S

P̂k(y | xk,h, ak,h)V ∗h+1(y)

−
∑
y∈S

P(y | xk,h, ak,h)V ∗h+1(y)

 (3)
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The first part of (3) can be seen as the empirical mean of
∑

y∈S P(y | xk,h, ak,h)V ∗h+1(y) after nk(xk,h, ak,h)
trials. By event E1, we conclude that

|(I)| ≤ c1H

√
ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)
. (4)

We now take care of (II). Note that

(II) =
∑
y∈S

(
P̂k(y | xk,h, ak,h)− P(y | xk,h, ak,h)

)
(Ṽk,h+1 − V ∗h+1)(y). (5)

Let S ′ be the set of states such that

P(y | xk,h, ak,h)(1 ∨ nk(xk,h, ak,h)) ≥ c2H2 ln(SAT/δ).

Rewrite (5) we get

(II) ≤ 1

H
δ̃k,h+1

+
∑
y∈S′

(P̂k(y | xk,h, ak,h)− P(y | xk,h, ak,h))(Ṽk,h+1 − V πk
h+1)(y)− 1

H
δ̃k,h+1︸ ︷︷ ︸

(III)

+
∑

y∈(S−S′)

(
P̂k(y | xk,h, ak,h)− P(y | xk,h, ak,h)

)
(Ṽk,h+1 − V ∗h+1)(y)

︸ ︷︷ ︸
(IV )

, (6)

where we have used V πk
h+1(y) ≤ V ∗h+1(y). Due to event E2, we have

(III) ≤ 1

H

∑
y∈S′

P(y | xk,h, ak,h)(Ṽk,h+1 − V πk
h+1)(y)− δ̃k,h+1


≤ 1

H

(
(P(Ṽk,h+1 − V πk

h+1))(xk,h, ak,h)− δ̃k,h+1

)
(7)

Next we upper bound (IV ). By event E3 and plugging in inequality P(y | xk,h, ak,h) ≤ c2H2 ln(SAT/δ)
1∨nk(xk,h,ak,h)

, we
have

(IV ) ≤ c3HS ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)
+
c2H

2S ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)

≤ max{c2, c3}H2S ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)

Plugging in upper bounds of (I), (III), (IV ) to (1), we prove this lemma.

Combining Lemma 9 and Lemma 10, we get

δ̃k,h ≤
(

1 +
1

H

)
δ̃k,h+1 +

(
1 +

1

H

)
(P(Ṽk,h+1 − V πk

h+1)(xk,h, ak,h)− δ̃k,h+1)

+ 2c1H

√
ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)
+

max{c2, c3}H2S ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)
.
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Hence

K∑
k=1

δ̃k,1 ≤
(

1 +
1

H

)H [ K∑
k=1

H∑
h=1

(P(Ṽk,h+1 − V πk
h+1)(xk,h, ak,h)− δ̃k,h+1)︸ ︷︷ ︸
(∗)

+ 2c1H
K∑
k=1

H∑
h=1

√
ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)︸ ︷︷ ︸
(∗∗)

+ max{c2, c3}
K∑
k=1

H∑
h=1

H2S ln(SAT/δ)

1 ∨ nk(xk,h, ak,h)︸ ︷︷ ︸
(∗∗∗)

]

. H + (∗) +H(∗∗) + (∗ ∗ ∗). (8)

(∗) can be seen as a martingale withKH random variables and satisfiesH-Lipschitz. By Azuma’s inequality
(Lemma 15), with probability at least (1− δ/4), it holds that

|(∗)| . H
√

ln(1/δ)T . (9)

And this defines event E4. Let K be the set of (k, h)’s such that nk,h(xk,h, ak,h) = 0. Hence |K| ≤ SA.
Rewrite (∗∗), we have

(∗∗) ≤ SA
√

ln(SAT/δ) +
∑

(x,a)∈S×A

nK(x,a)∑
t=1

√
ln(SAT/δ)

t

. SA
√

ln(SAT/δ) +
√

ln(SAT/δ) ·
∑

(x,a)∈S×A

√
nK(x, a)

≤ SA
√

ln(SAT/δ) +
√
SAT ln(SAT/δ), (10)

where the last inequality is due to Cauchy–Schwarz inequality. Using a similar way, we get

(∗ ∗ ∗) ≤ SA
√

ln(SAT/δ) +
∑

(x,a)∈S×A

nK(x,a)∑
t=1

H2S ln(SAT/δ)

t

. SA
√

ln(SAT/δ) +H2S ln(SAT/δ)
∑

(x,a)∈S×A

ln(nK(x, a))

≤ H2S2A ln

(
T

SA

)
ln(SAT/δ), (11)

where the last inequality is due to Jensen’s inequality applied to ln(·) function. Putting back (9), (10), and
(11) into (8), we prove this theorem.
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5 Probability Tools

The following lemma states Hoeffding’s inequality.

Lemma 12. Let X1, X2, . . . , Xt be independent random variables bounded by [0,M ]. Let X =
∑t

i=1Xi.
For every ε ≥ 0, it holds that

Pr (|X − EX| ≥ ε) ≤ 2 exp

(
− 2ε2

M2

)
.

The following lemma states a weak Multiplicative Chernoff bound.

Lemma 13. Let X1, X2, . . . , Xt be independent random variables bounded by [0, 1]. Let X =
∑t

i=1Xi.
For every ε ∈ [0, 1], it holds that

Pr (X ≥ (1 + ε)EX) ≤ exp

(
−ε

2EX
3

)
.

The following lemma states Bernstein’s inequality.

Lemma 14. Let X1, X2, . . . , Xt be zero-mean independent random variables bounded by [−M,M ]. Let
X =

∑t
i=1Xi. For every ε ≥ 0, it holds that

Pr (X > ε) ≤ exp

(
−

1
2ε

2∑t
i=1 E[X2

i ] + 1
3Mε

)
.

AssumingX0 = 0, a martingale (X1, . . . , Xt) is c-Lipschitz if |Xi−Xi−1| ≤ ci where c = (c1, . . . , ct).
The following lemma states Azuma’s inequality.

Lemma 15. ([2]) If a martingale (X1, . . . , Xt) is c-Lipschitz, define X = Xt, then for every ε ≥ 0, it holds
that

Pr(|X − EX| ≥ ε) ≤ 2 exp

(
− ε2

2
∑t

i=1 c
2
i

)
,

where c = (c1, . . . , ct).
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