Notes of [1]

Chao Tao

Jan. 31, 2020

1 Problem Setup

There is a tabular episodic $\operatorname{MDP} \mathcal{M}=\left(\mathcal{S}, \mathcal{A}, \mathbb{P}, R, H, s_{1}\right)$ where we assume the reward function R is bounded within $[0,1]$ and for simplicity we also assume R is deterministic. In other words, only the transition probability \mathbb{P} is unknown. We want to find a policy such that the expected regret incurred by this policy after K episodes is minimized. Given a policy $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$, the regret incurred by this policy is defined by

$$
\mathcal{R}_{K}^{\pi} \stackrel{\text { def }}{=} \sum_{k=1}^{K}\left(V_{1}^{*}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right),
$$

where V denotes the value function and the initial state $x_{k, 1}$ can be either randomized or adversarial.
Remark 1. There exists an optimal policy which is Markov and deterministic (may depend on time $t \in[H]$).

2 Notations and Definitions

$[n]$	$\{1,2, \ldots, n\}$
\mathcal{A}	action space
A	$\|\mathcal{A}\|$
\mathcal{S}	state space
S	$\|\mathcal{S}\|$
H	horizon
K	\# of episodes
T	$H K$
$R: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$	known reward function
$\mathbb{P}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$	an arbitrary policy where π_{k} is the policy in the k th episode
$Q_{h}^{\pi_{k}}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$	Q-value function of policy π_{k} starting from time h
$V_{h}^{\pi_{k}}: \mathcal{S} \rightarrow \mathbb{R}$	value function of policy π_{k} starting from time h
Q_{k}^{*}	Q-value function of the optimal policy starting from time h
V_{h}^{*}	value function of the optimal policy starting from time h
$x_{k, 1}$	initial state of the k th episode
$\left(x_{k, h}, a_{k, h}\right)$	state-action pair at the h th time step of the k th episode
\mathcal{H}_{k}	history before the k th episode $\left(x_{1,1}, a_{1,1}, \ldots, x_{1, H+1}, \ldots, x_{k-1,1}, a_{k-1,1} \ldots, x_{k-1, H+1}\right)$
$n_{k}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{N}$	number of hits of state-action pair before the k th episode
$n_{k}(y \mid x, a)$	number of hits of state y when taking action a at state x before the k th episode
$\mathbb{\mathbb { P }}_{k}$	empirical transition probability using \mathcal{H}_{k}
$\widetilde{Q}_{k, h}$	estimate of the optimal Q-value function starting from the h th step of the k th episode
$\widetilde{V}_{k, h}$	estimate of the optimal value function starting from the h th step of the k th episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x, a)$	$\sum_{y \in \mathcal{S}} \rho(y \mid x, a) V(y)$
\mathcal{R}_{K}^{π}	regret incurred by policy π

3 Algorithm

```
Algorithm 1: UCBVI-CH ([1])
    initialization: \(\widetilde{Q}_{1, h}(x, a)=H-h+1\) for every \((h, x, a) \in[H] \times \mathcal{S} \times \mathcal{A}\)
    for episode \(k=1\) to \(K\) do
        if \(k>1\) then
            call Algorithm 2 to compute \(\widetilde{Q}_{k, \cdot}(\cdot, \cdot)\) and \(\widetilde{V}_{k, \cdot}(\cdot)\)
        for step \(h=1\) to \(H\) do
            observe state \(x_{k, h}\)
            take action \(a_{k, h}=\operatorname{argmax}_{a \in \mathcal{A}} \widetilde{Q}_{k, h}\left(x_{k, h}, a\right)\)
```

```
Algorithm 2: Computation of \(\widetilde{Q}_{k,( }(\cdot, \cdot)\) and \(\widetilde{V}_{k,( }(\cdot)\)
```

 initialization: \(\widetilde{Q}_{k, H+1}(x, a)=\widetilde{V}_{k, H+1}(x, a)=0\) and \(\widehat{\mathbb{P}}_{k}(y \mid x, a)=\frac{n_{k}(y \mid x, a)}{n_{k}(x, a)}\) for every
 \((x, a, y) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}\)
 for step \(h=H\) downto 1 do
 for every state-action pair \((x, a)\) do
 if \((x, a)=\left(x_{k-1, h}, a_{k-1, h}\right)\) then
 let \(b_{k}(x, a)=c_{1} H \sqrt{\frac{\ln (S A T / \delta)}{n_{k}(x, a)}}\)
 \(\widetilde{Q}_{k, h}(x, a)=R(x, a)+\left(\widehat{\mathbb{P}}_{k} \widetilde{V}_{k, h+1}\right)(x, a)+b_{k}(x, a)\)
 else
 \(\widetilde{Q}_{k, h}(x, a)=\widetilde{Q}_{k-1, h}(x, a)\)
 for every state \(x \in \mathcal{S}\) do
 \(\widetilde{V}_{k, h}(x)=\min \left\{H+1-h, \max _{a \in \mathcal{A}} \widetilde{Q}_{k, h}(x, a)\right\}\)
 Here c_{1} is a constant which will be defined when event \mathcal{E}_{1} is defined.
Remark 2. Algorithm 1 needs to know the horizon T.

4 Proofs

4.1 Favorable Events

4.1.1 \mathcal{E}_{1}

Given any $(x, a, t) \in \mathcal{S} \times \mathcal{A} \times[T]$, define i.i.d. random variables $X_{1}^{x, a}, \ldots, X_{t}^{x, a}$ following the distribution $\mathbb{P}(x, a)$. Let
$\mathcal{E}_{1} \stackrel{\text { def }}{=}\left\{\forall(h, x, a, t) \in[H] \times \mathcal{S} \times \mathcal{A} \times[T],\left|\frac{\sum_{i=1}^{t} V_{h}^{*}\left(X_{i}^{x, a}\right)}{t}-\sum_{y \in \mathcal{S}} \mathbb{P}(y \mid x, a) V_{h}^{*}(y)\right| \leq c_{1} H \sqrt{\frac{\ln (S A T / \delta)}{t}}\right\}$,
where c_{1} is a constant which will be defined later.
By Hoeffding's inequality (Lemma 12) and a union bound, there exists a constant c_{1} such that $\operatorname{Pr}\left(\mathcal{E}_{1}\right) \geq$ $1-\delta / 4$.

4.1.2 \mathcal{E}_{2}

Given any $(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times[T]$, suppose i.i.d. random variables $X_{1}^{x, a, y}, \ldots, X_{t}^{x, a, y}$ follow the Bernoulli distribution $\mathcal{B}(\mathbb{P}(y \mid x, a))$. Let

$$
\begin{aligned}
\mathcal{E}_{2} & \stackrel{\text { def }}{=}\left\{\forall(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times[T] \text { satisfying } \mathbb{P}(y \mid x, a) t \geq c_{2} H^{2} \ln (S A T / \delta),\right. \\
& \left.\frac{\sum_{i=1}^{t} X_{i}^{x, a, y}}{t} \leq(1+1 / H) \mathbb{P}(y \mid x, a)\right\},
\end{aligned}
$$

where c_{2} is a constant which will be defined later.
By Multiplicative Chernoff bound (Lemma 13) and a union bound, there exists a constant c_{2} such that $\operatorname{Pr}\left(\mathcal{E}_{2}\right) \geq 1-\delta / 4$.

4.1.3 $\quad \mathcal{E}_{3}$

Given any $(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times[T]$, suppose i.i.d. random variables $X_{1}^{x, a, y}, \ldots, X_{t}^{x, a, y}$ follow the Bernoulli distribution $\mathcal{B}(\mathbb{P}(y \mid x, a))$. Let

$$
\begin{aligned}
& \mathcal{E}_{3} \stackrel{\text { def }}{=}\{\forall(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times[T] \text { satisfying } \mathbb{P}(y \mid x, a) t \leq \\
& \leq c_{2} H^{2} \ln (S A T / \delta) \\
&\left.\frac{\sum_{i=1}^{t} X_{i}^{x, a, y}}{t} \leq \frac{c_{3} H \ln (S A T / \delta)}{t}\right\},
\end{aligned}
$$

where c_{3} is a constant which will be defined later.
By Bernstein's inequality (Lemma 14) and a union bound, there exists a constant c_{3} such that $\operatorname{Pr}\left(\mathcal{E}_{3}\right) \geq$ $1-\delta / 4$.

4.2 Main Theorem

Theorem 3. With probability at least $1-\delta$, the regret incurred by Algorithm 1 is bounded by

$$
O\left(H \sqrt{S A T \ln (S A T / \delta)}+H^{2} S^{2} A \ln \left(\frac{T}{S A}\right) \ln (S A T / \delta)\right) .
$$

Remark 4. When T is large, with probability at least $1-\delta$, the regret is bounded by $\widetilde{O}(H \sqrt{S A T})$.
Corollary 5. There exists an algorithm who does not need to know the horizon T and its expected regret is bounded by $\widetilde{O}(H \sqrt{S A T})$.
Proof. We leverge doubling trick to design the new algorithm. Denote Algorithm 1 by $\mathbb{A}(\delta, T)$. Since we do not know the horizon, a good strategy is to guess. Specifically, we divide the whole time steps into several episodes and in episode i, run $\mathbb{A}\left(1 / 2^{i}, 2^{i}\right)$ for 2^{i} steps. The algorithm continues until the end of the horizon.

Now we analyze the regret. It is easy to see the expected regret of episode i is upper bounded by $\widetilde{O}\left(H \sqrt{S A 2^{i}}\right)$. Let I be the minimum integer such that $\sum_{i=1}^{I} 2^{i} \geq T$. And we have $2^{I} \leq T+2$. Hence the total expected regret is upper bounded by

$$
\sum_{i=1}^{I} \widetilde{O}\left(H \sqrt{S A 2^{i}}\right)=\widetilde{O}\left(H \sqrt{S A 2^{I}}\right)=\widetilde{O}(H \sqrt{S A T})
$$

Remark 6. The optimal upper bound is $\widetilde{O}(\sqrt{H S A T})$ [1]. And the lower bound is $\Omega(\sqrt{H S A T})$ [3].
Proof. The following arguments are conditioned on event $\mathcal{E} \stackrel{\text { def }}{=} \mathcal{E}_{1} \wedge \mathcal{E}_{2} \wedge \mathcal{E}_{3} \wedge \mathcal{E}_{4}$, where \mathcal{E}_{4} is defined later. And for simplicity, we use $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ to represent Algorithm 1.

We first prove that the estimated Q-value function $\widetilde{Q}_{k, h}$ is optimistic.
Lemma 7. For every $(k, h, x, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$, it holds that

$$
\widetilde{Q}_{k, h}(x, a) \geq Q_{h}^{*}(x, a) .
$$

Corollary 8. For every $(k, h, x) \in[K] \times[H] \times \mathcal{S}$, it holds that $\widetilde{V}_{k, h}(x) \geq V_{h}^{*}(x)$.
Proof. Fix (k, h, x, a) and note that

$$
\begin{aligned}
\widetilde{Q}_{k, h}(x, a)-Q_{h}^{*}(x, a) & =\left(\widehat{\mathbb{P}}_{k} \widetilde{V}_{k, h+1}\right)(x, a)-\left(\mathbb{P} V_{h+1}^{*}\right)(x, a)+b_{k}(x, a) \\
& =\left(\widehat{\mathbb{P}}_{k}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\right)(x, a)+\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) V_{h+1}^{*}\right)(x, a)+b_{k}(x, a)
\end{aligned}
$$

By event \mathcal{E}_{1}, we have $\left|\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) V_{h+1}^{*}(x, a)\right| \leq b_{k}(x, a)$. Using mathematical induction, we prove this lemma.

With optimistic guarantee, we can give a direct upper bound of \mathcal{R}_{K}^{π}. Note that

$$
\begin{aligned}
\mathcal{R}_{K}^{\pi} & =\sum_{k=1}^{K}\left(V_{1}^{*}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right) \\
& \leq \sum_{k=1}^{K}\left(\widetilde{V}_{k, 1}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right) \\
& =\sum_{k=1}^{K} \widetilde{\delta}_{k, 1} .
\end{aligned}
$$

where we have defined $\widetilde{\delta}_{k, h} \stackrel{\text { def }}{=}\left(\widetilde{V}_{k, h}-V_{h}^{\pi_{k}}\right)\left(x_{k, h}\right)$.
The next step idea is to rewrite $\widetilde{\delta}_{k, h}$ using $\widetilde{\delta}_{k, h+1}$ and then use recursion to calculate an upper bound of $\sum_{k=1}^{K} \widetilde{\delta}_{k, h}$. We first show

Lemma 9.

$\widetilde{\delta}_{k, h}=\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) \widetilde{V}_{k, h+1}\right)\left(x_{k, h}, a_{k, h}\right)+\left(\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right)+\widetilde{\delta}_{k, h+1}+b_{k}\left(x_{k, h}, a_{k, h}\right)$
The idea to write in this way is that the expectation of $\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}$ is 0 conditioned on history $\mathcal{H}_{k}, x_{k, 1}, a_{k, 1}, \ldots, x_{k, h}$.

Proof. Just note that

$$
\begin{aligned}
\widetilde{\delta}_{k, h} & =\widetilde{V}_{k, h}\left(x_{k, h}\right)-V_{h}^{\pi_{k}}\left(x_{k, h}\right) \\
& =\left(\widehat{\mathbb{P}}_{k} \widetilde{V}_{k, h+1}\right)\left(x_{k, h}, a_{k, h}\right)-\left(\mathbb{P} V_{h+1}^{\pi_{k}}\right)\left(x_{k, h}, a_{k, h}\right)+b_{k}\left(x_{k, h}, a_{k, h}\right) \\
& =\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) \widetilde{V}_{k, h+1}\right)\left(x_{k, h}, a_{k, h}\right)+\left(\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right)+\widetilde{\delta}_{k, h+1}+b_{k}\left(x_{k, h}, a_{k, h}\right)
\end{aligned}
$$

We next focus on bounding

$$
\begin{equation*}
\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) \widetilde{V}_{k, h+1}\right)\left(x_{k, h}, a_{k, h}\right) \tag{1}
\end{equation*}
$$

and show
Lemma 10 (One Step Transition Probability Error).

$$
\begin{aligned}
(1) \leq \frac{1}{H} \widetilde{\delta}_{k, h+1}+ & c_{1} H \sqrt{\frac{\ln (S A T / \delta)}{n_{k}\left(x_{k, h}, a_{k, h}\right)}} \\
& +\frac{1}{H}\left(\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right)+\frac{\max \left\{c_{2}, c_{3}\right\} H^{2} S \ln (S A T / \delta)}{n_{k}\left(x_{k, h}, a_{k, h}\right)} .
\end{aligned}
$$

Remark 11. There exists an easier way to bound (1) which leavages Hölder's inequality to derive

$$
(1) \leq\left\|\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right)\left(x_{k, h}, a_{k, h}\right)\right\|_{1} \cdot\left\|\widetilde{V}_{k, h+1}\right\|_{\infty}
$$

and then uses the inequality in [4] to bound the ℓ_{1}-norm deviation of the transition probability. Using this method will lead to an extra \sqrt{S} in the final conclusion.

Proof. Rewrite (1) we have

$$
\begin{equation*}
(1)=\underbrace{\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right) V_{h+1}^{*}\right)\left(x_{k, h}, a_{k, h}\right)}_{(I)}+\underbrace{\left(\left(\widehat{\mathbb{P}}_{k}-\mathbb{P}\right)\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\right)\left(x_{k, h}, a_{k, h}\right)}_{(I I)} \tag{2}
\end{equation*}
$$

Consider (I) first. Note that

$$
\begin{align*}
(I) & =\sum_{y \in \mathcal{S}}\left(\widehat{\mathbb{P}}_{k}\left(y \mid x_{k, h}, a_{k, h}\right)-\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\right) V_{h+1}^{*}(y) \\
& =\left(\sum_{y \in \mathcal{S}} \widehat{\mathbb{P}}_{k}\left(y \mid x_{k, h}, a_{k, h}\right) V_{h+1}^{*}(y)\right)-\left(\sum_{y \in \mathcal{S}} \mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right) V_{h+1}^{*}(y)\right) \tag{3}
\end{align*}
$$

The first part of (3) can be seen as the empirical mean of $\sum_{y \in \mathcal{S}} \mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right) V_{h+1}^{*}(y)$ after $n_{k}\left(x_{k, h}, a_{k, h}\right)$ trials. By event \mathcal{E}_{1}, we conclude that

$$
\begin{equation*}
|(I)| \leq c_{1} H \sqrt{\frac{\ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}} \tag{4}
\end{equation*}
$$

We now take care of $(I I)$. Note that

$$
\begin{equation*}
(I I)=\sum_{y \in \mathcal{S}}\left(\widehat{\mathbb{P}}_{k}\left(y \mid x_{k, h}, a_{k, h}\right)-\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\right)\left(\tilde{V}_{k, h+1}-V_{h+1}^{*}\right)(y) \tag{5}
\end{equation*}
$$

Let \mathcal{S}^{\prime} be the set of states such that

$$
\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\left(1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)\right) \geq c_{2} H^{2} \ln (S A T / \delta)
$$

Rewrite (5) we get

$$
\begin{align*}
(I I) \leq & \frac{1}{H} \widetilde{\delta}_{k, h+1} \\
& +\underbrace{\sum_{y \in \mathcal{S}^{\prime}}\left(\widehat{\mathbb{P}}_{k}\left(y \mid x_{k, h}, a_{k, h}\right)-\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\right)\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)(y)-\frac{1}{H} \widetilde{\delta}_{k, h+1}}_{(I I I)} \\
& +\underbrace{\sum_{y \in\left(\mathcal{S}-\mathcal{S}^{\prime}\right)}\left(\widehat{\mathbb{P}}_{k}\left(y \mid x_{k, h}, a_{k, h}\right)-\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\right)\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)(y),}_{(I V)} \tag{6}
\end{align*}
$$

where we have used $V_{h+1}^{\pi_{k}}(y) \leq V_{h+1}^{*}(y)$. Due to event \mathcal{E}_{2}, we have

$$
\begin{align*}
(I I I) & \leq \frac{1}{H}\left(\sum_{y \in \mathcal{S}^{\prime}} \mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right)\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)(y)-\widetilde{\delta}_{k, h+1}\right) \\
& \leq \frac{1}{H}\left(\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right) \tag{7}
\end{align*}
$$

Next we upper bound $(I V)$. By event \mathcal{E}_{3} and plugging in inequality $\mathbb{P}\left(y \mid x_{k, h}, a_{k, h}\right) \leq \frac{c_{2} H^{2} \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}$, we have

$$
\begin{aligned}
(I V) & \leq \frac{c_{3} H S \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}+\frac{c_{2} H^{2} S \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)} \\
& \leq \frac{\max \left\{c_{2}, c_{3}\right\} H^{2} S \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}
\end{aligned}
$$

Plugging in upper bounds of $(I),(I I I),(I V)$ to (1), we prove this lemma.
Combining Lemma 9 and Lemma 10, we get

$$
\begin{aligned}
\widetilde{\delta}_{k, h} \leq\left(1+\frac{1}{H}\right) \widetilde{\delta}_{k, h+1}+\left(1+\frac{1}{H}\right) & \left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right) \\
& +2 c_{1} H \sqrt{\frac{\ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}}+\frac{\max \left\{c_{2}, c_{3}\right\} H^{2} S \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}
\end{aligned}
$$

Hence

$$
\begin{align*}
\sum_{k=1}^{K} \widetilde{\delta}_{k, 1} \leq & \left(1+\frac{1}{H}\right)^{H}[\underbrace{\sum_{k=1}^{K} \sum_{h=1}^{H}\left(\mathbb{P}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h}, a_{k, h}\right)-\widetilde{\delta}_{k, h+1}\right)}_{(*)} \\
& +2 c_{1} H \underbrace{\sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{\ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}}+\max \left\{c_{2}, c_{3}\right\} \underbrace{\sum_{k=1}^{K} \sum_{h=1}^{H} \frac{H^{2} S \ln (S A T / \delta)}{1 \vee n_{k}\left(x_{k, h}, a_{k, h}\right)}}_{(* * *)}]}_{(* *)} \\
& \lesssim H+(*)+H(* *)+(* * *) . \tag{8}
\end{align*}
$$

(*) can be seen as a martingale with $K H$ random variables and satisfies H-Lipschitz. By Azuma's inequality (Lemma 15), with probability at least $(1-\delta / 4)$, it holds that

$$
\begin{equation*}
|(*)| \lesssim H \sqrt{\ln (1 / \delta) T} . \tag{9}
\end{equation*}
$$

And this defines event \mathcal{E}_{4}. Let \mathcal{K} be the set of (k, h) 's such that $n_{k, h}\left(x_{k, h}, a_{k, h}\right)=0$. Hence $|\mathcal{K}| \leq S A$. Rewrite ($* *$), we have

$$
\begin{align*}
(* *) & \leq S A \sqrt{\ln (S A T / \delta)}+\sum_{(x, a) \in \mathcal{S} \times \mathcal{A}} \sum_{t=1}^{n_{K}(x, a)} \sqrt{\frac{\ln (S A T / \delta)}{t}} \\
& \lesssim S A \sqrt{\ln (S A T / \delta)}+\sqrt{\ln (S A T / \delta)} \cdot \sum_{(x, a) \in \mathcal{S} \times \mathcal{A}} \sqrt{n_{K}(x, a)} \\
& \leq S A \sqrt{\ln (S A T / \delta)}+\sqrt{S A T \ln (S A T / \delta)}, \tag{10}
\end{align*}
$$

where the last inequality is due to Cauchy-Schwarz inequality. Using a similar way, we get

$$
\begin{align*}
(* * *) & \leq S A \sqrt{\ln (S A T / \delta)}+\sum_{(x, a) \in \mathcal{S} \times \mathcal{A}} \sum_{t=1}^{n_{K}(x, a)} \frac{H^{2} S \ln (S A T / \delta)}{t} \\
& \lesssim S A \sqrt{\ln (S A T / \delta)}+H^{2} S \ln (S A T / \delta) \sum_{(x, a) \in \mathcal{S} \times \mathcal{A}} \ln \left(n_{K}(x, a)\right) \\
& \leq H^{2} S^{2} A \ln \left(\frac{T}{S A}\right) \ln (S A T / \delta), \tag{11}
\end{align*}
$$

where the last inequality is due to Jensen's inequality applied to $\ln (\cdot)$ function. Putting back (9), (10), and (11) into (8), we prove this theorem.

5 Probability Tools

The following lemma states Hoeffding's inequality.
Lemma 12. Let $X_{1}, X_{2}, \ldots, X_{t}$ be independent random variables bounded by [0, M]. Let $X=\sum_{i=1}^{t} X_{i}$. For every $\epsilon \geq 0$, it holds that

$$
\operatorname{Pr}(|X-\mathbb{E} X| \geq \epsilon) \leq 2 \exp \left(-\frac{2 \epsilon^{2}}{M^{2}}\right) .
$$

The following lemma states a weak Multiplicative Chernoff bound.
Lemma 13. Let $X_{1}, X_{2}, \ldots, X_{t}$ be independent random variables bounded by $[0,1]$. Let $X=\sum_{i=1}^{t} X_{i}$. For every $\epsilon \in[0,1]$, it holds that

$$
\operatorname{Pr}(X \geq(1+\epsilon) \mathbb{E} X) \leq \exp \left(-\frac{\epsilon^{2} \mathbb{E} X}{3}\right)
$$

The following lemma states Bernstein's inequality.
Lemma 14. Let $X_{1}, X_{2}, \ldots, X_{t}$ be zero-mean independent random variables bounded by $[-M, M]$. Let $X=\sum_{i=1}^{t} X_{i}$. For every $\epsilon \geq 0$, it holds that

$$
\operatorname{Pr}(X>\epsilon) \leq \exp \left(-\frac{\frac{1}{2} \epsilon^{2}}{\sum_{i=1}^{t} \mathbb{E}\left[X_{i}^{2}\right]+\frac{1}{3} M \epsilon}\right) .
$$

Assuming $X_{0}=0$, a martingale $\left(X_{1}, \ldots, X_{t}\right)$ is \boldsymbol{c}-Lipschitz if $\left|X_{i}-X_{i-1}\right| \leq c_{i}$ where $\boldsymbol{c}=\left(c_{1}, \ldots, c_{t}\right)$. The following lemma states Azuma's inequality.

Lemma 15. ([2]) If a martingale $\left(X_{1}, \ldots, X_{t}\right)$ is \mathbf{c}-Lipschitz, define $X=X_{t}$, then for every $\epsilon \geq 0$, it holds that

$$
\operatorname{Pr}(|X-\mathbb{E} X| \geq \epsilon) \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 \sum_{i=1}^{t} c_{i}^{2}}\right)
$$

where $\boldsymbol{c}=\left(c_{1}, \ldots, c_{t}\right)$.

References

[1] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In ICML, pages 263-272, 2017.
[2] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. Internet Mathematics, 3(1):79-127, 2006.
[3] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. Journal of Machine Learning Research, 11(Apr):1563-1600, 2010.
[4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, 2003.

