Notes of [1]

Chao Tao

Jan. 31, 2020

1 Problem Setup

There is a *tabular episodic* MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathbb{P}, R, H, s_1)$ where we assume the reward function R is bounded within [0, 1] and for simplicity we also assume R is *deterministic*. In other words, only the transition probability \mathbb{P} is *unknown*. We want to find a policy such that the *expected* regret incurred by this policy after K episodes is minimized. Given a policy $\pi = (\pi_1, \ldots, \pi_K)$, the regret incurred by this policy is defined by

$$\mathcal{R}_K^{\pi} \stackrel{\text{def}}{=} \sum_{k=1}^K (V_1^* - V_1^{\pi_k})(x_{k,1}),$$

where V denotes the value function and the initial state $x_{k,1}$ can be either randomized or *adversarial*.

Remark 1. There exists an optimal policy which is Markov and deterministic (may depend on time $t \in [H]$).

2 Notations and Definitions

[n]	$\{1, 2, \dots, n\}$
\mathcal{A}	action space
A	$ \mathcal{A} $
S	state space
S	$ \mathcal{S} $
H	horizon
K	# of episodes
T	HK
$R: \mathcal{S} \times \mathcal{A} \to [0, 1]$	known reward function
$\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi = (\pi_1, \ldots, \pi_K)$	an arbitrary policy where π_k is the policy in the kth episode
$Q_h^{\pi_k}: \mathcal{S} imes \mathcal{A} o \mathbb{R}$	Q-value function of policy π_k starting from time h
$V_h^{\pi_k}: \mathcal{S} o \mathbb{R}$	value function of policy π_k starting from time h
Q_h^*	Q-value function of the optimal policy starting from time h
V_h^*	value function of the optimal policy starting from time h
$x_{k,1}$	initial state of the k th episode
$(x_{k,h}, a_{k,h})$	state-action pair at the h th time step of the k th episode
\mathcal{H}_k	history before the kth episode $(x_{1,1}, a_{1,1}, \ldots, x_{1,H+1}, \ldots, x_{k-1,1}, a_{k-1,1}, \ldots, x_{k-1,H+1})$
$n_k: \mathcal{S} \times \mathcal{A} \to \mathbb{N}$	number of hits of state-action pair before the k th episode
$n_k(y \mid x, a)$	number of hits of state y when taking action a at state x before the k th episode
$\widehat{\mathbb{P}}_k$	empirical transition probability using \mathcal{H}_k
$\widetilde{Q}_{k,h}$	estimate of the optimal Q -value function starting from the h th step of the k th episode
$\widetilde{V}_{k,h}$	estimate of the optimal value function starting from the h th step of the k th episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x,a)$	$\sum_{y \in \mathcal{S}} \rho(y \mid x, a) V(y)$
\mathcal{R}^{π}_{K}	regret incurred by policy π

3 Algorithm

Algorithm 1: UCBVI-CH ([1])

1 initialization: $\widetilde{Q}_{1,h}(x,a) = H - h + 1$ for every $(h, x, a) \in [H] \times S \times A$ 2 for episode k = 1 to K do 3 if k > 1 then 4 call Algorithm 2 to compute $\widetilde{Q}_{k,\cdot}(\cdot, \cdot)$ and $\widetilde{V}_{k,\cdot}(\cdot)$ 5 for step h = 1 to H do 6 observe state $x_{k,h}$ 7 take action $a_{k,h} = \operatorname{argmax}_{a \in \mathcal{A}} \widetilde{Q}_{k,h}(x_{k,h}, a)$

Algorithm 2: Computation of $\widetilde{Q}_{k,\cdot}(\cdot, \cdot)$ and $\widetilde{V}_{k,\cdot}(\cdot)$

1 initialization: $\widetilde{Q}_{k,H+1}(x,a) = \widetilde{V}_{k,H+1}(x,a) = 0$ and $\widehat{\mathbb{P}}_{k}(y \mid x,a) = \frac{n_{k}(y \mid x,a)}{n_{k}(x,a)}$ for every $(x, a, y) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$ **2** for step h = H downto 1 do 3 for every state-action pair (x, a) do if $(x, a) = (x_{k-1,h}, a_{k-1,h})$ then 4 $\begin{bmatrix} \det b_k(x,a) = c_1 H \sqrt{\frac{\ln(SAT/\delta)}{n_k(x,a)}} \\ \widetilde{Q}_{k,h}(x,a) = R(x,a) + (\widehat{\mathbb{P}}_k \widetilde{V}_{k,h+1})(x,a) + b_k(x,a) \end{bmatrix}$ 5 6 else 7 $\widetilde{Q}_{k,h}(x,a) = \widetilde{Q}_{k-1,h}(x,a)$ 8 for every state $x \in S$ do 9 $\widetilde{V}_{k,h}(x) = \min\{H+1-h, \max_{a \in \mathcal{A}} \widetilde{Q}_{k,h}(x,a)\}$ 10

Here c_1 is a constant which will be defined when event \mathcal{E}_1 is defined.

Remark 2. Algorithm 1 needs to know the horizon T.

4 **Proofs**

4.1 Favorable Events

4.1.1 \mathcal{E}_1

Given any $(x, a, t) \in S \times A \times [T]$, define *i.i.d.* random variables $X_1^{x,a}, \ldots, X_t^{x,a}$ following the distribution $\mathbb{P}(x, a)$. Let

$$\mathcal{E}_1 \stackrel{\text{def}}{=} \left\{ \forall (h, x, a, t) \in [H] \times \mathcal{S} \times \mathcal{A} \times [T], \left| \frac{\sum_{i=1}^t V_h^*(X_i^{x, a})}{t} - \sum_{y \in \mathcal{S}} \mathbb{P}(y \mid x, a) V_h^*(y) \right| \le c_1 H \sqrt{\frac{\ln(SAT/\delta)}{t}} \right\},$$

where c_1 is a constant which will be defined later.

By Hoeffding's inequality (Lemma 12) and a union bound, there exists a constant c_1 such that $Pr(\mathcal{E}_1) \ge 1 - \delta/4$.

4.1.2 \mathcal{E}_2

Given any $(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [T]$, suppose *i.i.d.* random variables $X_1^{x, a, y}, \ldots, X_t^{x, a, y}$ follow the Bernoulli distribution $\mathcal{B}(\mathbb{P}(y \mid x, a))$. Let

$$\begin{split} \mathcal{E}_2 \stackrel{\text{def}}{=} & \left\{ \forall (x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [T] \text{ satisfying } \mathbb{P}(y \mid x, a) t \geq c_2 H^2 \ln(SAT/\delta), \\ & \frac{\sum_{i=1}^t X_i^{x, a, y}}{t} \leq (1 + 1/H) \mathbb{P}(y \mid x, a) \right\}, \end{split}$$

where c_2 is a constant which will be defined later.

By Multiplicative Chernoff bound (Lemma 13) and a union bound, there exists a constant c_2 such that $\mathbf{Pr}(\mathcal{E}_2) \ge 1 - \delta/4$.

4.1.3 *E*₃

Given any $(x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [T]$, suppose *i.i.d.* random variables $X_1^{x, a, y}, \ldots, X_t^{x, a, y}$ follow the Bernoulli distribution $\mathcal{B}(\mathbb{P}(y \mid x, a))$. Let

$$\begin{split} \mathcal{E}_3 \stackrel{\text{def}}{=} & \bigg\{ \forall (x, a, y, t) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times [T] \text{ satisfying } \mathbb{P}(y \mid x, a) t \leq c_2 H^2 \ln(SAT/\delta), \\ & \frac{\sum_{i=1}^t X_i^{x, a, y}}{t} \leq \frac{c_3 H \ln(SAT/\delta)}{t} \bigg\}, \end{split}$$

where c_3 is a constant which will be defined later.

By Bernstein's inequality (Lemma 14) and a union bound, there exists a constant c_3 such that $\mathbf{Pr}(\mathcal{E}_3) \ge 1 - \delta/4$.

4.2 Main Theorem

Theorem 3. With probability at least $1 - \delta$, the regret incurred by Algorithm 1 is bounded by

$$O\left(H\sqrt{SAT\ln(SAT/\delta)} + H^2S^2A\ln\left(\frac{T}{SA}\right)\ln(SAT/\delta)\right).$$

Remark 4. When T is large, with probability at least $1 - \delta$, the regret is bounded by $\widetilde{O}(H\sqrt{SAT})$.

Corollary 5. There exists an algorithm who does not need to know the horizon T and its expected regret is bounded by $\tilde{O}(H\sqrt{SAT})$.

Proof. We leverge doubling trick to design the new algorithm. Denote Algorithm 1 by $\mathbb{A}(\delta, T)$. Since we do not know the horizon, a good strategy is to guess. Specifically, we divide the whole time steps into several episodes and in episode *i*, run $\mathbb{A}(1/2^i, 2^i)$ for 2^i steps. The algorithm continues until the end of the horizon.

Now we analyze the regret. It is easy to see the expected regret of episode i is upper bounded by $\widetilde{O}(H\sqrt{SA2^i})$. Let I be the minimum integer such that $\sum_{i=1}^{I} 2^i \ge T$. And we have $2^I \le T + 2$. Hence the total expected regret is upper bounded by

$$\sum_{i=1}^{I} \widetilde{O}(H\sqrt{SA2^{i}}) = \widetilde{O}(H\sqrt{SA2^{I}}) = \widetilde{O}(H\sqrt{SAT}).$$

Remark 6. The optimal upper bound is $\widetilde{O}(\sqrt{HSAT})$ [1]. And the lower bound is $\Omega(\sqrt{HSAT})$ [3].

Proof. The following arguments are conditioned on event $\mathcal{E} \stackrel{\text{def}}{=} \mathcal{E}_1 \wedge \mathcal{E}_2 \wedge \mathcal{E}_3 \wedge \mathcal{E}_4$, where \mathcal{E}_4 is defined later. And for simplicity, we use $\pi = (\pi_1, \ldots, \pi_K)$ to represent Algorithm 1.

We first prove that the estimated Q-value function $Q_{k,h}$ is optimistic.

Lemma 7. For every $(k, h, x, a) \in [K] \times [H] \times S \times A$, it holds that

$$\widetilde{Q}_{k,h}(x,a) \ge Q_h^*(x,a).$$

Corollary 8. For every $(k, h, x) \in [K] \times [H] \times S$, it holds that $\widetilde{V}_{k,h}(x) \geq V_h^*(x)$.

Proof. Fix (k, h, x, a) and note that

$$\begin{aligned} \widetilde{Q}_{k,h}(x,a) - Q_h^*(x,a) &= (\widehat{\mathbb{P}}_k \widetilde{V}_{k,h+1})(x,a) - (\mathbb{P}V_{h+1}^*)(x,a) + b_k(x,a) \\ &= (\widehat{\mathbb{P}}_k (\widetilde{V}_{k,h+1} - V_{h+1}^*))(x,a) + ((\widehat{\mathbb{P}}_k - \mathbb{P})V_{h+1}^*)(x,a) + b_k(x,a) \end{aligned}$$

By event \mathcal{E}_1 , we have $|(\widehat{\mathbb{P}}_k - \mathbb{P})V_{h+1}^*(x, a)| \leq b_k(x, a)$. Using mathematical induction, we prove this lemma.

With optimistic guarantee, we can give a direct upper bound of \mathcal{R}_K^{π} . Note that

$$\mathcal{R}_{K}^{\pi} = \sum_{k=1}^{K} (V_{1}^{*} - V_{1}^{\pi_{k}})(x_{k,1})$$
$$\leq \sum_{k=1}^{K} (\widetilde{V}_{k,1} - V_{1}^{\pi_{k}})(x_{k,1})$$
$$= \sum_{k=1}^{K} \widetilde{\delta}_{k,1}.$$

where we have defined $\widetilde{\delta}_{k,h} \stackrel{\text{def}}{=} (\widetilde{V}_{k,h} - V_h^{\pi_k})(x_{k,h})$. The next step idea is to rewrite $\widetilde{\delta}_{k,h}$ using $\widetilde{\delta}_{k,h+1}$ and then use recursion to calculate an upper bound of $\sum_{k=1}^{K} \widetilde{\delta}_{k,h}$. We first show

Lemma 9.

$$\widetilde{\delta}_{k,h} = ((\widehat{\mathbb{P}}_k - \mathbb{P})\widetilde{V}_{k,h+1})(x_{k,h}, a_{k,h}) + ((\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}) + \widetilde{\delta}_{k,h+1} + b_k(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1} + b_k(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}) + \widetilde{\delta}_{k,h+1} + b_k(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1} - b$$

The idea to write in this way is that the expectation of $(\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}$ is 0 conditioned on history $\mathcal{H}_k, x_{k,1}, a_{k,1}, \ldots, x_{k,h}$.

Proof. Just note that

$$\begin{split} \widetilde{\delta}_{k,h} &= \widetilde{V}_{k,h}(x_{k,h}) - V_h^{\pi_k}(x_{k,h}) \\ &= (\widehat{\mathbb{P}}_k \widetilde{V}_{k,h+1})(x_{k,h}, a_{k,h}) - (\mathbb{P}V_{h+1}^{\pi_k})(x_{k,h}, a_{k,h}) + b_k(x_{k,h}, a_{k,h}) \\ &= ((\widehat{\mathbb{P}}_k - \mathbb{P})\widetilde{V}_{k,h+1})(x_{k,h}, a_{k,h}) + ((\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}) + \widetilde{\delta}_{k,h+1} + b_k(x_{k,h}, a_{k,h}) \\ & \Box \end{split}$$

We next focus on bounding

$$((\widehat{\mathbb{P}}_k - \mathbb{P})\widetilde{V}_{k,h+1})(x_{k,h}, a_{k,h})$$
(1)

and show

Lemma 10 (One Step Transition Probability Error).

$$(1) \leq \frac{1}{H} \widetilde{\delta}_{k,h+1} + c_1 H \sqrt{\frac{\ln(SAT/\delta)}{n_k(x_{k,h}, a_{k,h})}} \\ + \frac{1}{H} \left((\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1} \right) + \frac{\max\{c_2, c_3\} H^2 S \ln(SAT/\delta)}{n_k(x_{k,h}, a_{k,h})}.$$

Remark 11. There exists an easier way to bound (1) which leavages Hölder's inequality to derive

$$(1) \le \left\| (\widehat{\mathbb{P}}_k - \mathbb{P})(x_{k,h}, a_{k,h}) \right\|_1 \cdot \left\| \widetilde{V}_{k,h+1} \right\|_{\infty}$$

and then uses the inequality in [4] to bound the ℓ_1 -norm deviation of the transition probability. Using this method will lead to an extra \sqrt{S} in the final conclusion.

Proof. Rewrite (1) we have

$$(1) = \underbrace{((\widehat{\mathbb{P}}_{k} - \mathbb{P})V_{h+1}^{*})(x_{k,h}, a_{k,h})}_{(I)} + \underbrace{((\widehat{\mathbb{P}}_{k} - \mathbb{P})(\widetilde{V}_{k,h+1} - V_{h+1}^{*}))(x_{k,h}, a_{k,h})}_{(II)}$$
(2)

Consider (I) first. Note that

$$(I) = \sum_{y \in \mathcal{S}} \left(\widehat{\mathbb{P}}_{k}(y \mid x_{k,h}, a_{k,h}) - \mathbb{P}(y \mid x_{k,h}, a_{k,h}) \right) V_{h+1}^{*}(y)$$

= $\left(\sum_{y \in \mathcal{S}} \widehat{\mathbb{P}}_{k}(y \mid x_{k,h}, a_{k,h}) V_{h+1}^{*}(y) \right) - \left(\sum_{y \in \mathcal{S}} \mathbb{P}(y \mid x_{k,h}, a_{k,h}) V_{h+1}^{*}(y) \right)$ (3)

The first part of (3) can be seen as the empirical mean of $\sum_{y \in S} \mathbb{P}(y \mid x_{k,h}, a_{k,h}) V_{h+1}^*(y)$ after $n_k(x_{k,h}, a_{k,h})$ trials. By event \mathcal{E}_1 , we conclude that

$$|(I)| \le c_1 H \sqrt{\frac{\ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})}}.$$
(4)

We now take care of (II). Note that

$$(II) = \sum_{y \in \mathcal{S}} \left(\widehat{\mathbb{P}}_k(y \mid x_{k,h}, a_{k,h}) - \mathbb{P}(y \mid x_{k,h}, a_{k,h}) \right) (\widetilde{V}_{k,h+1} - V_{h+1}^*)(y).$$
(5)

Let \mathcal{S}' be the set of states such that

$$\mathbb{P}(y \mid x_{k,h}, a_{k,h})(1 \lor n_k(x_{k,h}, a_{k,h})) \ge c_2 H^2 \ln(SAT/\delta)$$

Rewrite (5) we get

$$(II) \leq \frac{1}{H} \widetilde{\delta}_{k,h+1} + \sum_{y \in \mathcal{S}'} (\widehat{\mathbb{P}}_{k}(y \mid x_{k,h}, a_{k,h}) - \mathbb{P}(y \mid x_{k,h}, a_{k,h})) (\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_{k}})(y) - \frac{1}{H} \widetilde{\delta}_{k,h+1}$$

$$(III) + \sum_{y \in (\mathcal{S} - \mathcal{S}')} \left(\widehat{\mathbb{P}}_{k}(y \mid x_{k,h}, a_{k,h}) - \mathbb{P}(y \mid x_{k,h}, a_{k,h}) \right) (\widetilde{V}_{k,h+1} - V_{h+1}^{*})(y), \qquad (6)$$

where we have used $V_{h+1}^{\pi_k}(y) \leq V_{h+1}^*(y)$. Due to event \mathcal{E}_2 , we have

$$(III) \leq \frac{1}{H} \left(\sum_{y \in \mathcal{S}'} \mathbb{P}(y \mid x_{k,h}, a_{k,h}) (\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k})(y) - \widetilde{\delta}_{k,h+1} \right)$$
$$\leq \frac{1}{H} \left((\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1} \right)$$
(7)

Next we upper bound (*IV*). By event \mathcal{E}_3 and plugging in inequality $\mathbb{P}(y \mid x_{k,h}, a_{k,h}) \leq \frac{c_2 H^2 \ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})}$, we have

$$(IV) \le \frac{c_3 HS \ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})} + \frac{c_2 H^2 S \ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})} \\ \le \frac{\max\{c_2, c_3\} H^2 S \ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})}$$

Plugging in upper bounds of (I), (III), (IV) to (1), we prove this lemma.

Combining Lemma 9 and Lemma 10, we get

$$\begin{split} \widetilde{\delta}_{k,h} &\leq \left(1 + \frac{1}{H}\right) \widetilde{\delta}_{k,h+1} + \left(1 + \frac{1}{H}\right) \left(\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_k})(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}\right) \\ &+ 2c_1 H \sqrt{\frac{\ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})}} + \frac{\max\{c_2, c_3\} H^2 S \ln(SAT/\delta)}{1 \vee n_k(x_{k,h}, a_{k,h})}. \end{split}$$

Hence

$$\sum_{k=1}^{K} \widetilde{\delta}_{k,1} \leq \left(1 + \frac{1}{H}\right)^{H} \left[\sum_{k=1}^{K} \sum_{h=1}^{H} (\mathbb{P}(\widetilde{V}_{k,h+1} - V_{h+1}^{\pi_{k}})(x_{k,h}, a_{k,h}) - \widetilde{\delta}_{k,h+1}) \right]$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

$$(*)$$

(*) can be seen as a martingale with KH random variables and satisfies H-Lipschitz. By Azuma's inequality (Lemma 15), with probability at least $(1 - \delta/4)$, it holds that

$$|(*)| \lesssim H\sqrt{\ln(1/\delta)T}.$$
(9)

And this defines event \mathcal{E}_4 . Let \mathcal{K} be the set of (k, h)'s such that $n_{k,h}(x_{k,h}, a_{k,h}) = 0$. Hence $|\mathcal{K}| \leq SA$. Rewrite (**), we have

$$(**) \leq SA\sqrt{\ln(SAT/\delta)} + \sum_{(x,a)\in\mathcal{S}\times\mathcal{A}} \sum_{t=1}^{n_K(x,a)} \sqrt{\frac{\ln(SAT/\delta)}{t}}$$
$$\lesssim SA\sqrt{\ln(SAT/\delta)} + \sqrt{\ln(SAT/\delta)} \cdot \sum_{(x,a)\in\mathcal{S}\times\mathcal{A}} \sqrt{n_K(x,a)}$$
$$\leq SA\sqrt{\ln(SAT/\delta)} + \sqrt{SAT\ln(SAT/\delta)}, \tag{10}$$

where the last inequality is due to Cauchy-Schwarz inequality. Using a similar way, we get

$$(***) \leq SA\sqrt{\ln(SAT/\delta)} + \sum_{(x,a)\in\mathcal{S}\times\mathcal{A}} \sum_{t=1}^{n_K(x,a)} \frac{H^2S\ln(SAT/\delta)}{t}$$
$$\lesssim SA\sqrt{\ln(SAT/\delta)} + H^2S\ln(SAT/\delta) \sum_{(x,a)\in\mathcal{S}\times\mathcal{A}} \ln(n_K(x,a))$$
$$\leq H^2S^2A\ln\left(\frac{T}{SA}\right)\ln(SAT/\delta), \tag{11}$$

where the last inequality is due to Jensen's inequality applied to $\ln(\cdot)$ function. Putting back (9), (10), and (11) into (8), we prove this theorem.

5 Probability Tools

The following lemma states Hoeffding's inequality.

Lemma 12. Let X_1, X_2, \ldots, X_t be independent random variables bounded by [0, M]. Let $X = \sum_{i=1}^{t} X_i$. For every $\epsilon \ge 0$, it holds that

$$\mathbf{Pr}\left(|X - \mathbb{E}X| \ge \epsilon\right) \le 2\exp\left(-\frac{2\epsilon^2}{M^2}\right).$$

The following lemma states a weak Multiplicative Chernoff bound.

Lemma 13. Let X_1, X_2, \ldots, X_t be independent random variables bounded by [0, 1]. Let $X = \sum_{i=1}^{t} X_i$. For every $\epsilon \in [0, 1]$, it holds that

$$\mathbf{Pr}\left(X \ge (1+\epsilon)\mathbb{E}X\right) \le \exp\left(-\frac{\epsilon^2\mathbb{E}X}{3}\right).$$

The following lemma states Bernstein's inequality.

Lemma 14. Let X_1, X_2, \ldots, X_t be zero-mean independent random variables bounded by [-M, M]. Let $X = \sum_{i=1}^{t} X_i$. For every $\epsilon \ge 0$, it holds that

$$\mathbf{Pr}\left(X > \epsilon\right) \le \exp\left(-\frac{\frac{1}{2}\epsilon^2}{\sum_{i=1}^t \mathbb{E}[X_i^2] + \frac{1}{3}M\epsilon}\right).$$

Assuming $X_0 = 0$, a martingale (X_1, \ldots, X_t) is *c*-Lipschitz if $|X_i - X_{i-1}| \le c_i$ where $c = (c_1, \ldots, c_t)$. The following lemma states Azuma's inequality.

Lemma 15. ([2]) If a martingale (X_1, \ldots, X_t) is **c**-Lipschitz, define $X = X_t$, then for every $\epsilon \ge 0$, it holds that

$$\mathbf{Pr}(|X - \mathbb{E}X| \ge \epsilon) \le 2 \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^t c_i^2}\right)$$

where $c = (c_1, ..., c_t)$.

References

- Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning. In *ICML*, pages 263–272, 2017.
- [2] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. *Internet Mathematics*, 3(1):79–127, 2006.
- [3] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement learning. *Journal of Machine Learning Research*, 11(Apr):1563–1600, 2010.
- [4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. *Hewlett-Packard Labs, Tech. Rep*, 2003.