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1 Problem Setup

There is a tabular episodic MDP M = (S,A,P, R,H, s1) where we assume the reward function R is
bounded within [0, 1] and for simplicity we also assume R is deterministic. In other words, only the tran-
sition probability P is unknown. We want to find a policy such that the expected regret incurred by this
policy after K episodes is minimized. Given a policy π = (π1, . . . , πK), the regret incurred by this policy
is defined by

RπK
def
=

K∑
k=1

(V ∗1 − V
πk
1 )(xk,1),

where V denotes the value function and the initial state xk,1 can be either randomized or adversarial.
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2 Notations and Definitions

[n] {1, 2, . . . , n}
A action space
A |A|
S state space
S |S|
H horizon
K # of episodes
T HK
R : S ×A → [0, 1] known reward function
P : S ×A → ∆(S) transition probability of the underlying MDP
π = (π1, . . . , πK) an arbitrary policy where πk is the policy in the kth episode
Qπkh : S ×A → R Q-value function of policy πk starting from time h
V πk
h : S → R value function of policy πk starting from time h
Q∗h Q-value function of the optimal policy starting from time h
V ∗h value function of the optimal policy starting from time h
xk,1 initial state of the kth episode
(xk,h, ak,h) state-action pair in the kth episode and at the hth time step
Hk history before the kth episode (x1,1, a1,1, . . . , x1,H+1, . . . , xk−1,1, ak−1,1 . . . , xk−1,H+1)
nk,h(x, a) number of hits of state-action pair (x, a) at the hth time step before the kth episode
nk(x, a) number of hits of state-action pair (x, a) before the kth episode
Q̃k,h estimate of the optimal Q-value function starting from the hth step of the kth episode
Ṽk,h estimate of the optimal value function starting from the hth step of the kth episode
ρ an arbitrary transition probability
V an arbitrary value function
(ρV )(x, a)

∑
y∈S ρ(y | x, a)V (y)

RπK regret incurred by policy π
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3 Algorithm

Algorithm 1: Q-learning with UCB-Hoeffding ([2])

1 initialization: Q̃1,h(x, a) = H − h+ 1 for every (h, x, a) ∈ [H]× S ×A
2 for episode k = 1 to K do
3 if k > 1 then
4 call Algorithm 2 to compute Q̃k,·(·, ·) and Ṽk,·(·)
5 for step h = 1 to H do
6 observe state xk,h
7 take action ak,h = argmaxa∈AQ̃k,h(xk,h, a)

Algorithm 2: Computation of Q̃k,·(·, ·) and Ṽk,·(·)

1 initialization: Q̃k,H+1(x, a) = Ṽk,H+1(x, a) = 0 for every (x, a) ∈ S ×A
2 for step h = H downto 1 do
3 for every state-action pair (x, a) do
4 if (x, a) = (xk−1,h, ak−1,h) then

5 let t = nk,h(x, a), αt = H+1
H+t and βt = c1

√
2 ·
√

H3 ln(SAT/δ)
t

6 Q̃k,h(x, a) = Q̃k−1,h(x, a) + αt(R(x, a) + Ṽk−1,h+1(xk−1,h+1) + βt − Q̃k−1,h(x, a))

7 else
8 Q̃k,h(x, a) = Q̃k−1,h(x, a)

9 for every state x ∈ S do
10 Ṽk,h(x) = min{H + 1− h,maxa∈A Q̃k,h(x, a)}

Here c1 is a constant which will be defined later.

Remark 1. • Algorithm 1 needs to know the time horizon.

• Algorithm 1 is model free since it does not explicitly calculate the transition probability. Hence its
running time during each time step is O(SA).

4 Proofs

4.1 Favorable Events

4.1.1 E1

Given any (t, h, x, a) ∈ [K] × [H] × S × A, suppose at h’s time step of episode ki state-action pair (x, a)
is hit the ith time where 1 ≤ i ≤ t. Note that ki depends on (x, a). But for cleaner presentation, we have
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dropped that dependency in the notations. Let

E1
def
=

{
∀(t, h, x, a) ∈ [K]× [H]× S ×A,

∣∣∣∣∣
t∑
i=1

αit(V
∗
h (xki,h+1)− (PV ∗h )(x, a))

∣∣∣∣∣
≤ c1

√√√√H2

t∑
i=1

(αit)
2 · ln(SAT/δ)

}
,

where c1 is a constant which will be defined later.
By Azuma’s inequality (Lemma 13) and a union bound, there exists a constant c1 such that Pr(E1) ≥

1− δ/2.

4.2 Main Theorem

Theorem 2. With probability at least 1− δ, the regret incurred by Algorithm 1 is bounded by

O
(
SAH2 +H2

√
SAT ln(SAT/δ) +

√
TH2 ln(δ−1)

)
.

Remark 3. When T is large, the upper bound becomes Õ
(
H2
√
SAT

)
.

Corollary 4. There exists an algorithm who does not need to know the horizon T and its expected regret is
bounded by Õ

(
H2
√
SAT

)
.

Proof. By doubling trick. See previous lecture note for details.

Remark 5. The proof can be applied to the MDP where Pi 6= Pj for i 6= j. Here Pi denotes the transition
probability at the ith time step.

Remark 6. There exists a refined proof giving an upper bound Õ
(√

H3SAT
)

[2].

Proof. The following arguments are conditioned on event E def
= E1 ∧ E2, where E2 will be defined later. And

for simplicity, we use π = (π1, . . . , πK) to represent Algorithm 1.
We first prove that the estimated Q-value function Q̃k,h(x, a) is optimistic.

Lemma 7. For every (k, h, x, a) ∈ [K]× [H]× S ×A, it holds that

Q̃k,h(x, a) ≥ Q∗h(x, a).

Corollary 8. For every (k, h, x) ∈ [K]× [H]× S , it holds that Ṽk,h(x) ≥ V ∗h (x).

Proof. Fix (k, h, x, a) where k > 1 and nk,h(x, a) > 0 and let t = nk,h(x, a) which shares the same
definition as that in Algorithm 2. Note that

Q̃k,h(x, a) = (1− αt)Q̃prev(k),h(x, a) + αt(R(x, a) + Ṽprev(k),h+1(xprev(k),h+1) + βt)

= · · ·

= α0
t · Q̃1,h(x, a) +

t∑
i=1

αit · (R(x, a) + Ṽki,h+1(xki,h+1)) +
t∑
i=0

αitβi, (1)
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where we have defined ki and prev(k) as the episode when the ith time and the last time that state-action
pair (x, a) was hit at the hth time step before the kth episode respectively and

α0
t
def
=

t∏
j=1

(1− αj), αit
def
=

t∏
j=i+1

(1− αj) · αi.

Substracting both sides of (1) by Q∗h(x, a), we obtain

Q̃k,h(x, a)−Q∗h(x, a) = α0
t · (Q̃1,h(x, a)−Q∗h(x, a))

+
t∑
i=1

αit · (R(x, a) + Ṽki,h+1(xki,h+1)−Q∗h(x, a)) +
t∑
i=0

αitβi

= α0
t · (Q̃1,h(x, a)−Q∗h(x, a)) +

t∑
i=1

αit · (Ṽki,h+1(xki,h+1)− V ∗(xki,h+1))

+

t∑
i=1

αit · (V ∗(xki,h+1)− (PV ∗)(x, a)) +

t∑
i=0

αitβi, (2)

where in the last equality we have used the Bellman Optimality EquationQ∗h(x, a) = R(x, a)+(PV ∗h+1)(x, a).

Lemma 9. αit’s satisfy the following properties (Lemma 4.1 of [2]):

(a) α0
t = 0 and 1√

t
≤
∑t

i=1
αi
t√
i
≤ 2√

t
for every t ≥ 1 ,

(b)
∑t

i=1(α
i
t)
2 ≤ 2H

t for every t ≥ 1 ,
(c)

∑+∞
t=i α

i
t = 1 + 1

H for every i ≥ 1 .

By event E1 and Lemma 9(b), we have |
∑t

i=1 α
i
t·(V ∗(xki,h+1)−(PV ∗)(x, a))| ≤ c1

√
2·
√

H3 ln(SAT/δ)
t .

Further by Lemma 9(a), we have
∑t

i=0 α
i
tβi ≥ c1

√
2 ·
√

H3 ln(SAT/δ)
t ≥ |

∑t
i=1 α

i
t · (V ∗(xki,h+1) −

(PV ∗)(x, a))|. Using mathematical induction, we are able to show Q̃k,h(x, a)−Q∗h(x, a) ≥ 0 and conclude
the proof of this lemma.

With optimistic guarantee, we can give a direct upper bound ofRπK . Note that

RπK =
K∑
k=1

(V ∗1 − V
πk
1 )(xk,1)

≤
K∑
k=1

(Ṽk,1 − V πk
1 )(xk,1)

=
K∑
k=1

δ̃k,1.

where we have defined δ̃k,h
def
= (Ṽk,h − V πk

h )(xk,h).
The next step idea is to rewrite δ̃k,h using δ̃k,h+1 and then use recursion to calculate an upper bound of∑K
k=1 δ̃k,h. We first show
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Lemma 10. When nk,h(xk,h, ak,h) > 0, it holds that

δ̃k,h ≤
t∑
i=1

αit · (Ṽki,h+1(xki,h+1)− V ∗(xki,h+1))− (Ṽk,h+1 − V ∗h+1)(xk,h+1) + δ̃k,h+1

+ 2c1
√

2 ·
√
H3 ln(SAT/δ)

t
+ (P(V ∗h+1 − V

πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1).

Proof. Note that

δ̃k,h = Ṽk,h(xk,h)− V πk
h (xk,h)

= Q̃k,h(xk,h, ak,h)−Qπkh (xk,h, ak,h)

= Q̃k,h(xk,h, ak,h)−Q∗h(xk,h, ak,h) +Q∗h(xk,h, ak,h)−Qπkh (xk,h, ak,h). (3)

Plugging (2) and α0
t = 0 from Lemma 9(a) in (3), we obtain

δ̃k,h =

t∑
i=1

αit · (Ṽki,h+1(xki,h+1)− V ∗(xki,h+1))

+

t∑
i=1

αit · (V ∗(xki,h+1)− (PV ∗)(x, a)) +

t∑
i=0

αitβi +Q∗h(xk,h, ak,h)−Qπkh (xk,h, ak,h)

≤
t∑
i=1

αit · (Ṽki,h+1(xki,h+1)− V ∗(xki,h+1)) +Q∗h(xk,h, ak,h)−Qπkh (xk,h, ak,h)︸ ︷︷ ︸
(I)

+ 2c1
√

2 ·
√
H3 ln(SAT/δ)

t
, (4)

where we have used
∑t

i=1 α
i
t · (V ∗(xki,h+1) − (PV ∗)(x, a)) ≤ c1

√
2 ·
√

H3 ln(SAT/δ)
t and

∑t
i=0 α

i
tβi ≤

c1
√

2 ·
√

H3 ln(SAT/δ)
t . Both of them have been proved in the analysis of Lemma 7.

We next take care of (I) and try to expand it. Notice that

(I) = (P(V ∗h+1 − V
πk
h+1))(xk,h, ak,h)

= (P(V ∗h+1 − V
πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1) + δ̃k,h+1 − (Ṽk,h+1 − V ∗h+1)(xk,h+1).

(5)

The intuition to expand (I) in this way is that the expectation of (P(V ∗h+1 − V
πk
h+1))(xk,h, ak,h) − (V ∗h+1 −

V πk
h+1)(xk,h+1) equals 0 when it is conditioned on the historyHk and (xk,1, ak,1, . . . , xk,h).

Finally, plugging (5) back into (4), we prove this lemma.

Corollary 11.

K∑
k=1

δ̃k,h ≤ SAH+
K∑
k=1

t∑
i=1

αit·(Ṽki,h+1(xki,h+1)−V ∗(xki,h+1))−
K∑
k=1

(Ṽk,h+1−V ∗h+1)(xk,h+1)+
K∑
k=1

δ̃k,h+1

+

K∑
k=1

2c1
√

2 ·
√
H3 ln(SAT/δ)

t
+

K∑
k=1

(
(P(V ∗h+1 − V

πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1)

)
.
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Proof. When nk,h(xk,h, ak,h) = 0, we apply the naive upper bound i.e., δ̃k,h ≤ H . Let K be the set of k’s
such that nk,h(xk,h, ak,h) = 0. Note that |K| ≤ SA. So

∑
k∈K δ̃k,h ≤ SAH . Together with Lemma 10, we

prove this corollary.

We next focus on bounding

K∑
k=1

t∑
i=1

αit · (Ṽki,h+1(xki,h+1)− V ∗(xki,h+1))−
K∑
k=1

(Ṽk,h+1 − V ∗h+1)(xk,h+1) (6)

in Corollary 11 and show

Lemma 12.

(6) ≤ 1

H
·

(
K∑
k=1

(Ṽk,h+1 − V ∗h+1)(xk,h+1)

)
.

Proof. Recall t = nk,h(xk,h, ak,h). Rewrite (6) we have

(6) =

nK,h(xK,h,aK,h)∑
i=1

(
K∑

t=i+1

αit

)
· (Ṽki,h+1 − V ∗h+1)(xki,h+1)−

(
K∑
k=1

(Ṽk,h+1 − V ∗h+1)(xk,h+1)

)
.

By Lemma 9(c), we have
∑K

t=(i+1) α
i
t ≤ 1 + 1

H . Using aforementioned inequality, we are able to show this
lemma.

By Corollary 11, Lemma 12 and the fact that V ∗h+1(x) ≥ V πk
h+1(x), we have

K∑
k=1

δ̃k,h ≤ SAH +

(
1 +

1

H

)
·
K∑
k=1

δ̃k,h+1 +
K∑
k=1

2c1
√

2 ·
√
H3 ln(SAT/δ)

t

+

K∑
k=1

(
(P(V ∗h+1 − V

πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1)

)
.

Hence by recursion, we further obtain

K∑
k=1

δ̃1,h ≤
(

1 +
1

H

)H
·

(
SAH2 +

H∑
h=1

K∑
k=1

2c1
√

2 ·
√
H3 ln(SAT/δ)

t

+

H∑
h=1

K∑
k=1

(
(P(V ∗h+1 − V

πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1)

))

. SAH2 +
H∑
h=1

K∑
k=1

√
H3 ln(SAT/δ)

t︸ ︷︷ ︸
(∗)

+

H∑
h=1

K∑
k=1

(
(P(V ∗h+1 − V

πk
h+1))(xk,h, ak,h)− (V ∗h+1 − V

πk
h+1)(xk,h+1)

)
︸ ︷︷ ︸

(∗∗)

. (7)
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Rewrite (∗), we obtain

(∗) =
√
H3 ln(SAT/δ) ·

H∑
h=1

∑
(x,a)

nK,h(x,a)∑
t=1

√
1

t
.

Further applying
∑t

i=1
1
i ≤ 2

√
t and Cauchy–Schwarz inequality, we have

(∗) .
√
H3 ln(SAT/δ) ·

∑
(x,a)

H∑
h=1

√
nK,h(x, a)

≤
√
H3 ln(SAT/δ) ·

∑
(x,a)

√
H · nK(x, a)

= O(H2
√
SAT ln(SAT/δ)) (8)

Let E2
def
= {(∗∗) ≤ c2

√
TH2 ln(δ−1)}, where c2 is a constant which will be defined later. By Azuma’s

inequality, we have there exists a constant c2 such that Pr(E2) ≥ 1 − δ/2. According to event E2, it holds
that

(∗∗) ≤ c2
√
TH2 ln(δ−1). (9)

Plugging (8) and (9) back into (7), we prove this theorem.
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5 Probability Tools

Assuming X0 = 0, a martingale (X1, . . . , Xt) is c-Lipschitz if |Xi −Xi−1| ≤ ci where c = (c1, . . . , ct).
The following lemma states Azuma’s inequality.

Lemma 13. ([1]) If a martingale (X1, . . . , Xt) is c-Lipschitz, define X = Xt, then for every ε ≥ 0, it holds
that

Pr(|X − EX| ≥ ε) ≤ 2 exp

(
− ε2

2
∑t

i=1 c
2
i

)
,

where c = (c1, . . . , ct).
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