Notes of [2]

Chao Tao

Feb. 14, 2020

1 Problem Setup

There is a *tabular episodic* MDP $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathbb{P}, R, H, s_1)$ where we assume the reward function R is bounded within [0, 1] and for simplicity we also assume R is *deterministic*. In other words, only the transition probability \mathbb{P} is *unknown*. We want to find a policy such that the *expected* regret incurred by this policy after K episodes is minimized. Given a policy $\pi = (\pi_1, \ldots, \pi_K)$, the regret incurred by this policy is defined by

$$\mathcal{R}_K^{\pi} \stackrel{\text{def}}{=} \sum_{k=1}^K (V_1^* - V_1^{\pi_k})(x_{k,1}),$$

where V denotes the value function and the initial state $x_{k,1}$ can be either randomized or *adversarial*.

2 Notations and Definitions

[n]	$\{1,2,\ldots,n\}$
\mathcal{A}	action space
A	$ \mathcal{A} $
S	state space
S	$ \mathcal{S} $
Н	horizon
K	# of episodes
T	HK
$R: \mathcal{S} \times \mathcal{A} \to [0, 1]$	known reward function
$\mathbb{P}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi = (\pi_1, \ldots, \pi_K)$	an arbitrary policy where π_k is the policy in the kth episode
$Q_h^{\pi_k}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$	Q-value function of policy π_k starting from time h
$V_h^{\pi_k}: \mathcal{S} \to \mathbb{R}$	value function of policy π_k starting from time h
Q_h^*	Q-value function of the optimal policy starting from time h
V_h^*	value function of the optimal policy starting from time h
$x_{k,1}$	initial state of the kth episode
$(x_{k,h}, a_{k,h})$	state-action pair in the k th episode and at the h th time step
\mathcal{H}_k	history before the kth episode $(x_{1,1}, a_{1,1}, \dots, x_{1,H+1}, \dots, x_{k-1,1}, a_{k-1,1}, \dots, x_{k-1,H+1})$
$n_{k,h}(x,a)$	number of hits of state-action pair (x, a) at the <i>h</i> th time step <i>before</i> the <i>k</i> th episode
$n_k(x,a)$	number of hits of state-action pair (x, a) before the kth episode
$\widetilde{Q}_{k,h}$	estimate of the optimal Q -value function starting from the h th step of the k th episode
$\widetilde{V}_{k,h}$	estimate of the optimal value function starting from the h th step of the k th episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x,a)$	$\sum_{y \in \mathcal{S}} ho(y \mid x, a) V(y)$
\mathcal{R}_K^{π}	regret incurred by policy π

3 Algorithm

Algorithm 1: Q-learning with UCB-Hoeffding ([2])

1 initialization: $Q_{1,h}(x, a) = H - h + 1$ for every $(h, x, a) \in [H] \times S \times A$ 2 for episode k = 1 to K do 3 if k > 1 then 4 call Algorithm 2 to compute $\widetilde{Q}_{k,\cdot}(\cdot, \cdot)$ and $\widetilde{V}_{k,\cdot}(\cdot)$ 5 for step h = 1 to H do 6 observe state $x_{k,h}$ 7 take action $a_{k,h} = \operatorname{argmax}_{a \in \mathcal{A}} \widetilde{Q}_{k,h}(x_{k,h}, a)$

Algorithm 2: Computation of $\widetilde{Q}_{k,\cdot}(\cdot,\cdot)$ and $\widetilde{V}_{k,\cdot}(\cdot)$

1 initialization: $\widetilde{Q}_{k,H+1}(x,a) = \widetilde{V}_{k,H+1}(x,a) = 0$ for every $(x,a) \in \mathcal{S} \times \mathcal{A}$ **2** for step h = H downto 1 do 3 for every state-action pair (x, a) do if $(x, a) = (x_{k-1,h}, a_{k-1,h})$ then 4 $\begin{array}{l} \det t = n_{k,h}(x,a), \, \alpha_t = \frac{H+1}{H+t} \text{ and } \beta_t = c_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}} \\ \quad \widetilde{Q}_{k,h}(x,a) = \widetilde{Q}_{k-1,h}(x,a) + \alpha_t (R(x,a) + \widetilde{V}_{k-1,h+1}(x_{k-1,h+1}) + \beta_t - \widetilde{Q}_{k-1,h}(x,a)) \end{array}$ 5 6 else 7 $| \widetilde{Q}_{k,h}(x,a) = \widetilde{Q}_{k-1,h}(x,a)$ 8 for every state $x \in S$ do 9 $\widetilde{V}_{k,h}(x) = \min\{H+1-h, \max_{a \in \mathcal{A}} \widetilde{Q}_{k,h}(x,a)\}$ 10

Remark 1. • Algorithm 1 needs to know the time horizon.

• Algorithm 1 is model free since it does not explicitly calculate the transition probability. Hence its running time during each time step is O(SA).

4 **Proofs**

4.1 Favorable Events

4.1.1 \mathcal{E}_1

Given any $(t, h, x, a) \in [K] \times [H] \times S \times A$, suppose at h's time step of episode k_i state-action pair (x, a) is hit the *i*th time where $1 \le i \le t$. Note that k_i depends on (x, a). But for cleaner presentation, we have

Here c_1 is a constant which will be defined later.

dropped that dependency in the notations. Let

$$\mathcal{E}_{1} \stackrel{\text{def}}{=} \left\{ \forall (t, h, x, a) \in [K] \times [H] \times \mathcal{S} \times \mathcal{A}, \left| \sum_{i=1}^{t} \alpha_{t}^{i} (V_{h}^{*}(x_{k_{i}, h+1}) - (\mathbb{P}V_{h}^{*})(x, a)) \right| \\ \leq c_{1} \sqrt{H^{2} \sum_{i=1}^{t} (\alpha_{t}^{i})^{2} \cdot \ln(SAT/\delta)} \right\},$$

where c_1 is a constant which will be defined later.

By Azuma's inequality (Lemma 13) and a union bound, there exists a constant c_1 such that $Pr(\mathcal{E}_1) \ge 1 - \delta/2$.

4.2 Main Theorem

Theorem 2. With probability at least $1 - \delta$, the regret incurred by Algorithm 1 is bounded by

$$\mathcal{O}\left(SAH^2 + H^2\sqrt{SAT\ln(SAT/\delta)} + \sqrt{TH^2\ln(\delta^{-1})}\right)$$

Remark 3. When T is large, the upper bound becomes $\widetilde{O}(H^2\sqrt{SAT})$.

Corollary 4. There exists an algorithm who does not need to know the horizon T and its expected regret is bounded by $\widetilde{O}\left(H^2\sqrt{SAT}\right)$.

Proof. By doubling trick. See previous lecture note for details.

Remark 5. The proof can be applied to the MDP where $\mathbb{P}_i \neq \mathbb{P}_j$ for $i \neq j$. Here \mathbb{P}_i denotes the transition probability at the *i*th time step.

Remark 6. There exists a refined proof giving an upper bound $\widetilde{\mathcal{O}}\left(\sqrt{H^3SAT}\right)$ [2].

Proof. The following arguments are conditioned on event $\mathcal{E} \stackrel{\text{def}}{=} \mathcal{E}_1 \wedge \mathcal{E}_2$, where \mathcal{E}_2 will be defined later. And for simplicity, we use $\pi = (\pi_1, \ldots, \pi_K)$ to represent Algorithm 1.

We first prove that the estimated Q-value function $\widetilde{Q}_{k,h}(x,a)$ is optimistic.

Lemma 7. For every $(k, h, x, a) \in [K] \times [H] \times S \times A$, it holds that

$$\widetilde{Q}_{k,h}(x,a) \ge Q_h^*(x,a).$$

Corollary 8. For every $(k, h, x) \in [K] \times [H] \times S$, it holds that $\widetilde{V}_{k,h}(x) \geq V_h^*(x)$.

Proof. Fix (k, h, x, a) where k > 1 and $n_{k,h}(x, a) > 0$ and let $t = n_{k,h}(x, a)$ which shares the same definition as that in Algorithm 2. Note that

$$\widetilde{Q}_{k,h}(x,a) = (1 - \alpha_t)\widetilde{Q}_{prev(k),h}(x,a) + \alpha_t(R(x,a) + \widetilde{V}_{prev(k),h+1}(x_{prev(k),h+1}) + \beta_t)$$

$$= \cdots$$

$$= \alpha_t^0 \cdot \widetilde{Q}_{1,h}(x,a) + \sum_{i=1}^t \alpha_t^i \cdot (R(x,a) + \widetilde{V}_{k_i,h+1}(x_{k_i,h+1})) + \sum_{i=0}^t \alpha_t^i \beta_i, \qquad (1)$$

where we have defined k_i and prev(k) as the episode when the *i*th time and the last time that state-action pair (x, a) was hit at the *h*th time step *before* the *k*th episode respectively and

$$\alpha_t^0 \stackrel{\text{def}}{=} \prod_{j=1}^t (1 - \alpha_j), \qquad \alpha_t^i \stackrel{\text{def}}{=} \prod_{j=i+1}^t (1 - \alpha_j) \cdot \alpha_i.$$

Substracting both sides of (1) by $Q_h^*(x, a)$, we obtain

$$\widetilde{Q}_{k,h}(x,a) - Q_{h}^{*}(x,a) = \alpha_{t}^{0} \cdot (\widetilde{Q}_{1,h}(x,a) - Q_{h}^{*}(x,a)) \\
+ \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (R(x,a) + \widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - Q_{h}^{*}(x,a)) + \sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} \\
= \alpha_{t}^{0} \cdot (\widetilde{Q}_{1,h}(x,a) - Q_{h}^{*}(x,a)) + \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) \\
+ \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (V^{*}(x_{k_{i},h+1}) - (\mathbb{P}V^{*})(x,a)) + \sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i},$$
(2)

where in the last equality we have used the Bellman Optimality Equation $Q_h^*(x, a) = R(x, a) + (\mathbb{P}V_{h+1}^*)(x, a)$.

Lemma 9. α_t^i 's satisfy the following properties (Lemma 4.1 of [2]):

 $\begin{array}{ll} (a) \ \ \alpha_t^0 = 0 \ and \ \frac{1}{\sqrt{t}} \leq \sum_{i=1}^t \frac{\alpha_t^i}{\sqrt{i}} \leq \frac{2}{\sqrt{t}} \ for \ every \ t \geq 1 \ , \\ (b) \ \ \sum_{i=1}^t (\alpha_t^i)^2 \leq \frac{2H}{t} \ for \ every \ t \geq 1 \ , \\ (c) \ \ \sum_{t=i}^{+\infty} \alpha_t^i = 1 + \frac{1}{H} \ for \ every \ i \geq 1 \ . \end{array}$

By event \mathcal{E}_1 and Lemma 9(b), we have $|\sum_{i=1}^t \alpha_t^i \cdot (V^*(x_{k_i,h+1}) - (\mathbb{P}V^*)(x,a))| \le c_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}}$. Further by Lemma 9(a), we have $\sum_{i=0}^t \alpha_t^i \beta_i \ge c_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}} \ge |\sum_{i=1}^t \alpha_t^i \cdot (V^*(x_{k_i,h+1}) - (\mathbb{P}V^*)(x,a))|$. Using mathematical induction, we are able to show $\widetilde{Q}_{k,h}(x,a) - Q_h^*(x,a) \ge 0$ and conclude the proof of this lemma.

With optimistic guarantee, we can give a direct upper bound of \mathcal{R}_K^{π} . Note that

$$\mathcal{R}_{K}^{\pi} = \sum_{k=1}^{K} (V_{1}^{*} - V_{1}^{\pi_{k}})(x_{k,1})$$
$$\leq \sum_{k=1}^{K} (\widetilde{V}_{k,1} - V_{1}^{\pi_{k}})(x_{k,1})$$
$$= \sum_{k=1}^{K} \widetilde{\delta}_{k,1}.$$

where we have defined $\widetilde{\delta}_{k,h} \stackrel{\text{def}}{=} (\widetilde{V}_{k,h} - V_h^{\pi_k})(\underbrace{x_{k,h}}_{\sim}).$

The next step idea is to rewrite $\tilde{\delta}_{k,h}$ using $\tilde{\delta}_{k,h+1}$ and then use recursion to calculate an upper bound of $\sum_{k=1}^{K} \tilde{\delta}_{k,h}$. We first show

Lemma 10. When $n_{k,h}(x_{k,h}, a_{k,h}) > 0$, it holds that

$$\begin{split} \widetilde{\delta}_{k,h} &\leq \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) - (\widetilde{V}_{k,h+1} - V^{*}_{h+1})(x_{k,h+1}) + \widetilde{\delta}_{k,h+1} \\ &+ 2c_{1}\sqrt{2} \cdot \sqrt{\frac{H^{3}\ln(SAT/\delta)}{t}} + (\mathbb{P}(V^{*}_{h+1} - V^{\pi_{k}}_{h+1}))(x_{k,h}, a_{k,h}) - (V^{*}_{h+1} - V^{\pi_{k}}_{h+1})(x_{k,h+1}). \end{split}$$

Proof. Note that

$$\begin{split} \widetilde{\delta}_{k,h} &= \widetilde{V}_{k,h}(x_{k,h}) - V_h^{\pi_k}(x_{k,h}) \\ &= \widetilde{Q}_{k,h}(x_{k,h}, a_{k,h}) - Q_h^{\pi_k}(x_{k,h}, a_{k,h}) \\ &= \widetilde{Q}_{k,h}(x_{k,h}, a_{k,h}) - Q_h^*(x_{k,h}, a_{k,h}) + Q_h^*(x_{k,h}, a_{k,h}) - Q_h^{\pi_k}(x_{k,h}, a_{k,h}). \end{split}$$
(3)

Plugging (2) and $\alpha_t^0 = 0$ from Lemma 9(a) in (3), we obtain

$$\widetilde{\delta}_{k,h} = \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) + \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (V^{*}(x_{k_{i},h+1}) - (\mathbb{P}V^{*})(x,a)) + \sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} + Q_{h}^{*}(x_{k,h},a_{k,h}) - Q_{h}^{\pi_{k}}(x_{k,h},a_{k,h}) \leq \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) + \underbrace{Q_{h}^{*}(x_{k,h},a_{k,h}) - Q_{h}^{\pi_{k}}(x_{k,h},a_{k,h})}_{(I)} + 2c_{1}\sqrt{2} \cdot \sqrt{\frac{H^{3}\ln(SAT/\delta)}{t}},$$
(4)

where we have used $\sum_{i=1}^{t} \alpha_t^i \cdot (V^*(x_{k_i,h+1}) - (\mathbb{P}V^*)(x,a)) \leq c_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}}$ and $\sum_{i=0}^{t} \alpha_t^i \beta_i \leq C_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}}$ $c_1\sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}}$. Both of them have been proved in the analysis of Lemma 7. We next take care of (I) and try to expand it. Notice that

$$(I) = (\mathbb{P}(V_{h+1}^* - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) = (\mathbb{P}(V_{h+1}^* - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - (V_{h+1}^* - V_{h+1}^{\pi_k})(x_{k,h+1}) + \widetilde{\delta}_{k,h+1} - (\widetilde{V}_{k,h+1} - V_{h+1}^*)(x_{k,h+1}).$$
(5)

The intuition to expand (I) in this way is that the expectation of $(\mathbb{P}(V_{h+1}^* - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - (V_{h+1}^* - V_{h+1}^{\pi_k})(x_{k,h+1})$ equals 0 when it is conditioned on the history \mathcal{H}_k and $(x_{k,1}, a_{k,1}, \ldots, x_{k,h})$.

Finally, plugging (5) back into (4), we prove this lemma.

Corollary 11.

$$\begin{split} &\sum_{k=1}^{K} \widetilde{\delta}_{k,h} \leq SAH + \sum_{k=1}^{K} \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) - \sum_{k=1}^{K} (\widetilde{V}_{k,h+1} - V_{h+1}^{*})(x_{k,h+1}) + \sum_{k=1}^{K} \widetilde{\delta}_{k,h+1} + \sum_{k=1}^{K} 2c_{1}\sqrt{2} \cdot \sqrt{\frac{H^{3}\ln(SAT/\delta)}{t}} + \sum_{k=1}^{K} \left((\mathbb{P}(V_{h+1}^{*} - V_{h+1}^{\pi_{k}}))(x_{k,h}, a_{k,h}) - (V_{h+1}^{*} - V_{h+1}^{\pi_{k}})(x_{k,h+1}) \right). \end{split}$$

Proof. When $n_{k,h}(x_{k,h}, a_{k,h}) = 0$, we apply the naive upper bound i.e., $\tilde{\delta}_{k,h} \leq H$. Let \mathcal{K} be the set of k's such that $n_{k,h}(x_{k,h}, a_{k,h}) = 0$. Note that $|\mathcal{K}| \leq SA$. So $\sum_{k \in \mathcal{K}} \tilde{\delta}_{k,h} \leq SAH$. Together with Lemma 10, we prove this corollary.

We next focus on bounding

$$\sum_{k=1}^{K} \sum_{i=1}^{t} \alpha_{t}^{i} \cdot (\widetilde{V}_{k_{i},h+1}(x_{k_{i},h+1}) - V^{*}(x_{k_{i},h+1})) - \sum_{k=1}^{K} (\widetilde{V}_{k,h+1} - V^{*}_{h+1})(x_{k,h+1})$$
(6)

in Corollary 11 and show

Lemma 12.

(6)
$$\leq \frac{1}{H} \cdot \left(\sum_{k=1}^{K} (\widetilde{V}_{k,h+1} - V_{h+1}^*)(x_{k,h+1}) \right).$$

Proof. Recall $t = n_{k,h}(x_{k,h}, a_{k,h})$. Rewrite (6) we have

$$(6) = \sum_{i=1}^{n_{K,h}(x_{K,h},a_{K,h})} \left(\sum_{t=i+1}^{K} \alpha_t^i\right) \cdot (\widetilde{V}_{k_i,h+1} - V_{h+1}^*)(x_{k_i,h+1}) - \left(\sum_{k=1}^{K} (\widetilde{V}_{k,h+1} - V_{h+1}^*)(x_{k,h+1})\right).$$

By Lemma 9(c), we have $\sum_{t=(i+1)}^{K} \alpha_t^i \le 1 + \frac{1}{H}$. Using aforementioned inequality, we are able to show this lemma.

By Corollary 11, Lemma 12 and the fact that $V_{h+1}^*(x) \ge V_{h+1}^{\pi_k}(x)$, we have

$$\sum_{k=1}^{K} \widetilde{\delta}_{k,h} \leq SAH + \left(1 + \frac{1}{H}\right) \cdot \sum_{k=1}^{K} \widetilde{\delta}_{k,h+1} + \sum_{k=1}^{K} 2c_1 \sqrt{2} \cdot \sqrt{\frac{H^3 \ln(SAT/\delta)}{t}} \\ + \sum_{k=1}^{K} \left(\left(\mathbb{P}(V_{h+1}^* - V_{h+1}^{\pi_k}))(x_{k,h}, a_{k,h}) - (V_{h+1}^* - V_{h+1}^{\pi_k})(x_{k,h+1}) \right) \right).$$

Hence by recursion, we further obtain

$$\sum_{k=1}^{K} \widetilde{\delta}_{1,h} \leq \left(1 + \frac{1}{H}\right)^{H} \cdot \left(SAH^{2} + \sum_{h=1}^{H} \sum_{k=1}^{K} 2c_{1}\sqrt{2} \cdot \sqrt{\frac{H^{3}\ln(SAT/\delta)}{t}} + \sum_{h=1}^{H} \sum_{k=1}^{K} \left(\left(\mathbb{P}(V_{h+1}^{*} - V_{h+1}^{\pi_{k}}))(x_{k,h}, a_{k,h}) - (V_{h+1}^{*} - V_{h+1}^{\pi_{k}})(x_{k,h+1})\right)\right)$$

$$\lesssim SAH^{2} + \sum_{h=1}^{H} \sum_{k=1}^{K} \sqrt{\frac{H^{3}\ln(SAT/\delta)}{t}}_{(*)}$$

$$+ \sum_{h=1}^{H} \sum_{k=1}^{K} \left(\left(\mathbb{P}(V_{h+1}^{*} - V_{h+1}^{\pi_{k}}))(x_{k,h}, a_{k,h}) - (V_{h+1}^{*} - V_{h+1}^{\pi_{k}})(x_{k,h+1})\right)\right). \tag{7}$$

Rewrite (*), we obtain

$$(*) = \sqrt{H^3 \ln(SAT/\delta)} \cdot \sum_{h=1}^{H} \sum_{(x,a)} \sum_{t=1}^{n_{K,h}(x,a)} \sqrt{\frac{1}{t}}.$$

Further applying $\sum_{i=1}^{t} \frac{1}{i} \leq 2\sqrt{t}$ and Cauchy–Schwarz inequality, we have

$$(*) \lesssim \sqrt{H^3 \ln(SAT/\delta)} \cdot \sum_{(x,a)} \sum_{h=1}^{H} \sqrt{n_{K,h}(x,a)}$$
$$\leq \sqrt{H^3 \ln(SAT/\delta)} \cdot \sum_{(x,a)} \sqrt{H \cdot n_K(x,a)}$$
$$= \mathcal{O}(H^2 \sqrt{SAT \ln(SAT/\delta)}) \tag{8}$$

Let $\mathcal{E}_2 \stackrel{\text{def}}{=} \{(**) \leq c_2 \sqrt{TH^2 \ln(\delta^{-1})}\}$, where c_2 is a constant which will be defined later. By Azuma's inequality, we have there exists a constant c_2 such that $\mathbf{Pr}(\mathcal{E}_2) \geq 1 - \delta/2$. According to event \mathcal{E}_2 , it holds that

$$(**) \le c_2 \sqrt{TH^2 \ln(\delta^{-1})}.$$
 (9)

Plugging (8) and (9) back into (7), we prove this theorem.

5 Probability Tools

Assuming $X_0 = 0$, a martingale (X_1, \ldots, X_t) is *c*-Lipschitz if $|X_i - X_{i-1}| \le c_i$ where $c = (c_1, \ldots, c_t)$. The following lemma states Azuma's inequality.

Lemma 13. ([1]) If a martingale (X_1, \ldots, X_t) is c-Lipschitz, define $X = X_t$, then for every $\epsilon \ge 0$, it holds that

$$\mathbf{Pr}(|X - \mathbb{E}X| \ge \epsilon) \le 2 \exp\left(-\frac{\epsilon^2}{2\sum_{i=1}^t c_i^2}\right),$$

where $c = (c_1, ..., c_t)$.

References

- [1] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. *Internet Mathematics*, 3(1):79–127, 2006.
- [2] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In *NeurIPS*, pages 4863–4873, 2018.