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1 Problem Setup

There is a tabular episodic MDP M = (S, A,P, R, H, s;) where we assume the reward function R is
bounded within [0, 1] and for simplicity we also assume R is deterministic. In other words, only the tran-
sition probability PP is unknown. We want to find a policy such that the expected regret incurred by this

policy after K episodes is minimized. Given a policy m = (71, ..., Tk ), the regret incurred by this policy
is defined by
def a
Ri S Y (Vi = V™) (@x0),
k=1

where V' denotes the value function and the initial state xy, ; can be either randomized or adversarial.



2 Notations and Definitions
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3 Algorithm

Algorithm 1: Q-learning with UCB-Hoeffding ([2])

1 initialization: @Lh(aﬁ, a)=H — h+ 1forevery (h,z,a) € [H] xS x A
2 for episode k = 1 to K do

3 if £ > 1 then

4 L call Algorithm 2 to compute @h. (,-) and ‘7k (+)

5 for step h =1to H do

6 L observe state xy, p,

7

take action ay, ;, = argmax,c 4Qkn (T n, @)

Algorithm 2: Computation of @k(, -) and ‘N/k (+)

1 initialization: @k’HH(m, a) = ‘7k7H+1(I‘, a) = 0 forevery (z,a) € S x A
2 for step h = H downto 1 do

3 for every state-action pair (x,a) do
4 if ($, CL) = (:Ek’—l,hv ak_Lh) then
3 n

5 IEt t= nk,h(:z:,Na), oy = gﬁ and 3; = clﬂ- v/ w N

6 Qrn(z,a) = Qr-1n(z,a) + at(R(7,a) + Vi1 h1(Tk—1,n41) + Bt — Qk—1,n(7, a))
7 else

8 | Qrn(z,a) = Qr-1n(z,a)

9 for every state x € S do
10 L Vin(x) = min{H + 1 — h,max,ec 4 Qkn(z,a)}

Here ¢, is a constant which will be defined later.
Remark 1. o Algorithm I needs to know the time horizon.
e Algorithm 1 is model free since it does not explicitly calculate the transition probability. Hence its

running time during each time step is O(SA).

4 Proofs
4.1 Favorable Events
411 &

Given any (¢, h,z,a) € [K] x [H] x S x A, suppose at h’s time step of episode k; state-action pair (z, a)
is hit the ith time where 1 < ¢ < ¢. Note that k; depends on (z, a). But for cleaner presentation, we have



dropped that dependency in the notations. Let

t

& {V(t, h,z,a) € [K] x [H] xS x A, | b (Vi (wh,h41) — (PVJ)(%@))‘
=1

<o B3 (o) 1n<SAT/6>},

i=1
where c¢; is a constant which will be defined later.
By Azuma’s inequality (Lemma 13) and a union bound, there exists a constant ¢; such that Pr(&;) >
1-4/2.
4.2 Main Theorem
Theorem 2. With probability at least 1 — 0, the regret incurred by Algorithm 1 is bounded by

0 (SAH2 + H2\/SAT In(SAT/5) + /TH? 1n(571)) .

Remark 3. When T is large, the upper bound becomes O (H 2/ SAT )

Corollary 4. There exists an algorithm who does not need to know the horizon T' and its expected regret is

bounded by O (H 2JS AT) .
Proof. By doubling trick. See previous lecture note for details. O

Remark 5. The proof can be applied to the MDP where IP; # IP; for i # j. Here P; denotes the transition
probability at the ith time step.

Remark 6. There exists a refined proof giving an upper bound O (\/ H3S AT) [2].

Proof. The following arguments are conditioned on event £ def E1 N &9, where &9 will be defined later. And
for simplicity, we use 7 = (71, ..., 7k ) to represent Algorithm 1.
We first prove that the estimated @)-value function Qy, ,(, a) is optimistic.

Lemma 7. For every (k,h,x,a) € [K] x [H] x § X A, it holds that
Qin(z,a) > Qi (x,a).
Corollary 8. For every (k,h,z) € [K] x [H] x S, it holds that th(x) > V¥ ().

Proof. Fix (k,h,x,a) where k > 1 and ny p(x,a) > 0 and let t = ny p(x,a) which shares the same
definition as that in Algorithm 2. Note that

@k,h(mv a) = (1 - at)@prev(k),h<xv a) + at<R('r7 a) + Vprev(k),h+1(xprev(k),h+1) + /Bt)

t
= af - Qup(w,a) +Zat (R(z,a) + Viyna1 (o, 1) +Z@tﬁu &)



where we have defined k; and prev(k) as the episode when the ith time and the last time that state-action
pair (x, a) was hit at the hth time step before the kth episode respectively and

t

t
éHl—aJ Ozlz;d:ef H(l—aj)~ozi.

j=it+l

Substracting both sides of (1) by Q} (z, a), we obtain
Qrnlz,a) = Qj(w,a) = af - (Quu(x,a) — Qj(x,a))
t
+ ) of - (R(2,a) + Vig 1 (@h,011) — Qi (w,0)) + ) aiBs

i=1 =0
_ .0 ~ *
= ay - (Quu(z,a) — Qy(z,a)) + Zat (Vi1 (@r, 1) = V(@ n41))

t
+ Y ap (Vi (@huen) = (BV)(2,0)) + Y aif, )

i=1 =0

where in the last equality we have used the Bellman Optimality Equation Q} (7, a) = R(z, a)+(PV)’,)(z,a).

Lemma 9. o’s satisfy the following properties (Lemma 4.1 of [2]):

(a) at—Oand L <ZZ lat <ﬁf0reveryt21,

(b) Ez (o) < forevewtzl,
(c) S ozt—l—i— foreveryi>1.

By event & and Lemma 9(b), we have | Y"_; - (V* (g, pi1)—(PV*) (2, a))| < C1\@'\/@-
Further by Lemma 9(a), we have E o aiBi > a2 \/m |ZZ Lod s (Vg pg1) —

(PV*)(z,a))|. Using mathematical induction, we are able to show th(x, a) — Q5 (x,a) > 0 and conclude
the proof of this lemma. O

With optimistic guarantee, we can give a direct upper bound of R7% . Note that

K

k=2 (W = V) (an)

(Vi1 — V™) (251

where we have defined 5k h = (Vk h— 174 )(l’k h)-
The next step idea is to rewrite 5 k,h USIng 5k’ n+1 and then use recursion to calculate an upper bound of
Zle Ok, h- We first show



Lemma 10. When ny, (< p, ar ) > 0, it holds that

Onh < Zat (Ve ht1 @honi1) = V¥ (@rkonr1) — Vs — Vi) (@kntn) + Ok

H3In(SAT/s . _ . _
+201V2 n(t/) + P(Vair = Vit ) @k s akn) — (Vi — Vi) (@khr1)-

Proof. Note that
Sk = Vien(@en) — Vi (znn)
= Qun(Trp, akn) — QpF (Thh, Ak p)
= Qun(@rp, akn) — Qn(Trh, arp) + Qh(Thh, akn) — QpF (Th,hs Gk p)- 3)
Plugging (2) and o = 0 from Lemma 9(a) in (3), we obtain

t
Ok = 0k (Vg1 (T ne1) = Vi (@h n1))
=1

t
+ Z of - (V*(wk; h1) — (PV*)(2,a)) + Z B + Qp Ty k) — QRF (Thps akp)
i=1 =0

Z (Vi1 (@hon1) = Vi (@ronr1)) + @ (@ arn) — QF (s agn)

(1)

3
263 H31n(SAT/0)

= )

where we have used Y0, ai - (V*(zg, pr1) — (PV*)(x,a)) < c1v/2 - w and 3F_ i <
V2 -/ w . Both of them have been proved in the analysis of Lemma 7.

We next take care of (I) and try to expand it. Notice that

(1) = (P(Vyiq = Vi) (@ s @k n)

= P(Virt1 = VD)) @ aen) — (Vires = Vit ) @) + 0kt — (Vinsr — Virg) (@knen).

(%)
The intuition to expand (I) in this way is that the expectation of (P(Vy", ; — V') (@r,n, arp) — (Vi —
Vhﬂﬁl)(xk’h_‘_l) equals 0 when it is conditioned on the history Hj, and (xx 1,a%1,- - ., Tkh)-
Finally, plugging (5) back into (4), we prove this lemma. O
Corollary 11.
K t K K
> 6w < SAH+ZZ@ Vit (@) =V @i 1) = (Vine1=Vien) (@) + Y Okpit
k=1 =1i=1 k=1 k=1
H3In(SAT/S) & .
T ZQCM JEREATIO) S (@i~ Vi) g ann) — Vi — Vi) )
k=1



Proof. When ny, ,(xg p, arn) = 0, we apply the naive upper bound i.e., gk,h < H. Let K be the set of k’s

such that ny, j, (255, ax,n) = 0. Note that || < SA. So ) .« gkﬁ < SAH. Together with Lemma 10, we
prove this corollary. O

We next focus on bounding

K

K
Z b - (Vi ot (@ 1) — V¥ (@k, 011)) Z (Viht1 — Vi) (@h 1) (6)
k=1 i=1 k=1

in Corollary 11 and show

Lemma 12.

1 (&
©) < 5 <Z(Vk,h+1 - V};k+1)(xk,h+1)> :

k=1

Proof. Recallt = nk7h(3:k7h, ay,p). Rewrite (6) we have

nr b (TK,h,aK, h) K _ K
©6) = > ( > 04) Vi1 = Vi) (@ h1) — (Z(Vk,h—i-l - V;T+1)($k,h+1)> :

i=1 t=i+1 k=1

By Lemma 9(c), we have Zt (i+1) al <1+ H Using aforementioned inequality, we are able to show this
lemma. O

By Corollary 11, Lemma 12 and the fact that V;*, , (x) > V;"¥, (), we have

H3In(SAT/6
Z(5kh<SAH+<1+ ) Z5kh+1+z2cl\f M

k=1

K
+ Z ( Vh+1 h+1))(xk,h7 ak,h) - (V};k+1 - Vhﬂﬁl)(wk,h+l)>-
=1

Hence by recursion, we further obtain

K H H K
- 1 ) H* In(SAT/5)
;_lfsl,hﬁ <1+H> -(SAH YD 2V

h=1k=1

H
+Y > ( (Virer = Vit ) (@rns an) — (Vg — Vhﬂfl)(wk,hﬂ)))

h=1k=1
H K (173
=1k=1
()
H K
+> > ( (Vi = Vi) @ @) = (Vitys = Vb)) (@ensn) ) - (7

h=1k=

—_

(%)



Rewrite (), we obtain

H nK;an
(%) = \/H3In(SAT/$) - ZZ Z \[

h=1 (z,a) t=1

Further applying EZ 1 1 < 24/t and Cauchy—Schwarz inequality, we have

(x) < V/H3In(SAT/5) - ZZ,/nKh

(z,a) h=1
< VH3I(SAT/)- > /H -nk(,a)
(z,a)
= O(H?\/SAT In(SAT/5)) (8)

Let & e {(xx) < co \/Zm }, where ¢y is a constant which will be defined later. By Azuma’s
inequality, we have there exists a constant co such that Pr(&) > 1 — /2. According to event &y, it holds
that

(xx) < con/TH?In(671). )

Plugging (8) and (9) back into (7), we prove this theorem. L]



5 Probability Tools

Assuming X = 0, a martingale (X1, ..., X;) is c-Lipschitz if | X; — X;_1| < ¢; where ¢ = (c1,...,¢).
The following lemma states Azuma’s inequality.

Lemma 13. ([1]) If a martingale (X1, ..., X}) is c-Lipschitz, define X = Xy, then for every ¢ > 0, it holds

that
2
Pr(| X —EX|>¢) <2exp| —— |,
2 Zle c;
where ¢ = (c1,...,¢t).
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