Notes of [2]

Chao Tao

Feb. 14, 2020

1 Problem Setup

There is a tabular episodic $\operatorname{MDP} \mathcal{M}=\left(\mathcal{S}, \mathcal{A}, \mathbb{P}, R, H, s_{1}\right)$ where we assume the reward function R is bounded within $[0,1]$ and for simplicity we also assume R is deterministic. In other words, only the transition probability \mathbb{P} is unknown. We want to find a policy such that the expected regret incurred by this policy after K episodes is minimized. Given a policy $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$, the regret incurred by this policy is defined by

$$
\mathcal{R}_{K}^{\pi} \stackrel{\text { def }}{=} \sum_{k=1}^{K}\left(V_{1}^{*}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right),
$$

where V denotes the value function and the initial state $x_{k, 1}$ can be either randomized or adversarial.

2 Notations and Definitions

$[n]$	$\{1,2, \ldots, n\}$
\mathcal{A}	action space
A	$\|\mathcal{A}\|$
\mathcal{S}	state space
S	$\|\mathcal{S}\|$
H	horizon
K	\# of episodes
T	HK
$R: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$	known reward function
$\mathbb{P}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$	an arbitrary policy where π_{k} is the policy in the k th episode
$Q_{h}^{\pi_{k}}: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$	Q-value function of policy π_{k} starting from time h
$V_{h}^{\pi_{k}}: \mathcal{S} \rightarrow \mathbb{R}$	value function of policy π_{k} starting from time h
Q_{h}^{*}	Q-value function of the optimal policy starting from time h
V_{h}^{*}	value function of the optimal policy starting from time h
$x_{k, 1}$	initial state of the k th episode
$\left(x_{k, h}, a_{k, h}\right)$	state-action pair in the k th episode and at the h th time step
\mathcal{H}_{k}	history before the k th episode $\left(x_{1,1}, a_{1,1}, \ldots, x_{1, H+1}, \ldots, x_{k-1,1}, a_{k-1,1} \ldots, x_{k-1, H+1}\right)$
$n_{k, h}(x, a)$	number of hits of state-action pair (x, a) at the h th time step before the k th episode
$n_{k}(x, a)$	number of hits of state-action pair (x, a) before the k th episode
$\widetilde{Q}_{k, h}$	estimate of the optimal Q-value function starting from the h th step of the k th episode
$\widetilde{V}_{k, h}$	estimate of the optimal value function starting from the h th step of the k th episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x, a)$	$\sum_{y \in \mathcal{S}} \rho(y \mid x, a) V(y)$
\mathcal{R}_{K}^{π}	regret incurred by policy π

3 Algorithm

```
Algorithm 1: Q-learning with UCB-Hoeffding ([2])
    initialization: \(\widetilde{Q}_{1, h}(x, a)=H-h+1\) for every \((h, x, a) \in[H] \times \mathcal{S} \times \mathcal{A}\)
    for episode \(k=1\) to \(K\) do
        if \(k>1\) then
            call Algorithm 2 to compute \(\widetilde{Q}_{k,( }(\cdot, \cdot)\) and \(\widetilde{V}_{k, \cdot}(\cdot)\)
        for step \(h=1\) to \(H\) do
            observe state \(x_{k, h}\)
            take action \(a_{k, h}=\operatorname{argmax}_{a \in \mathcal{A}} \widetilde{Q}_{k, h}\left(x_{k, h}, a\right)\)
```

```
Algorithm 2: Computation of \(\widetilde{Q}_{k, \cdot}(\cdot, \cdot)\) and \(V_{k, \cdot}(\cdot)\)
    initialization: \(\widetilde{Q}_{k, H+1}(x, a)=\widetilde{V}_{k, H+1}(x, a)=0\) for every \((x, a) \in \mathcal{S} \times \mathcal{A}\)
    for step \(h=H\) downto 1 do
        for every state-action pair \((x, a)\) do
            if \((x, a)=\left(x_{k-1, h}, a_{k-1, h}\right)\) then
                let \(t=n_{k, h}(x, a), \alpha_{t}=\frac{H+1}{H+t}\) and \(\beta_{t}=c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}\)
                \(\widetilde{Q}_{k, h}(x, a)=\widetilde{Q}_{k-1, h}(x, a)+\alpha_{t}\left(R(x, a)+\widetilde{V}_{k-1, h+1}\left(x_{k-1, h+1}\right)+\beta_{t}-\widetilde{Q}_{k-1, h}(x, a)\right)\)
            else
                \(\widetilde{Q}_{k, h}(x, a)=\widetilde{Q}_{k-1, h}(x, a)\)
        for every state \(x \in \mathcal{S}\) do
            \(\widetilde{V}_{k, h}(x)=\min \left\{H+1-h, \max _{a \in \mathcal{A}} \widetilde{Q}_{k, h}(x, a)\right\}\)
```

Here c_{1} is a constant which will be defined later.
Remark 1. - Algorithm 1 needs to know the time horizon.

- Algorithm 1 is model free since it does not explicitly calculate the transition probability. Hence its running time during each time step is $\mathcal{O}(S A)$.

4 Proofs

4.1 Favorable Events

4.1.1 \mathcal{E}_{1}

Given any $(t, h, x, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$, suppose at h 's time step of episode k_{i} state-action pair (x, a) is hit the i th time where $1 \leq i \leq t$. Note that k_{i} depends on (x, a). But for cleaner presentation, we have
dropped that dependency in the notations. Let

$$
\begin{aligned}
\mathcal{E}_{1} \stackrel{\text { def }}{=}\left\{\forall(t, h, x, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}, \mid \sum_{i=1}^{t} \alpha_{t}^{i}\left(V_{h}^{*}\left(x_{k_{i}, h+1}\right)\right.\right. & \left.-\left(\mathbb{P} V_{h}^{*}\right)(x, a)\right) \mid \\
& \left.\leq c_{1} \sqrt{H^{2} \sum_{i=1}^{t}\left(\alpha_{t}^{i}\right)^{2} \cdot \ln (S A T / \delta)}\right\}
\end{aligned}
$$

where c_{1} is a constant which will be defined later.
By Azuma's inequality (Lemma 13) and a union bound, there exists a constant c_{1} such that $\operatorname{Pr}\left(\mathcal{E}_{1}\right) \geq$ $1-\delta / 2$.

4.2 Main Theorem

Theorem 2. With probability at least $1-\delta$, the regret incurred by Algorithm 1 is bounded by

$$
\mathcal{O}\left(S A H^{2}+H^{2} \sqrt{S A T \ln (S A T / \delta)}+\sqrt{T H^{2} \ln \left(\delta^{-1}\right)}\right) .
$$

Remark 3. When T is large, the upper bound becomes $\widetilde{\mathcal{O}}\left(H^{2} \sqrt{S A T}\right)$.
Corollary 4. There exists an algorithm who does not need to know the horizon T and its expected regret is bounded by $\widetilde{\mathcal{O}}\left(H^{2} \sqrt{S A T}\right)$.

Proof. By doubling trick. See previous lecture note for details.
Remark 5. The proof can be applied to the MDP where $\mathbb{P}_{i} \neq \mathbb{P}_{j}$ for $i \neq j$. Here \mathbb{P}_{i} denotes the transition probability at the ith time step.
Remark 6. There exists a refined proof giving an upper bound $\widetilde{\mathcal{O}}\left(\sqrt{H^{3} S A T}\right)$ [2].
Proof. The following arguments are conditioned on event $\mathcal{E} \stackrel{\text { def }}{=} \mathcal{E}_{1} \wedge \mathcal{E}_{2}$, where \mathcal{E}_{2} will be defined later. And for simplicity, we use $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ to represent Algorithm 1.

We first prove that the estimated Q-value function $\widetilde{Q}_{k, h}(x, a)$ is optimistic.
Lemma 7. For every $(k, h, x, a) \in[K] \times[H] \times \mathcal{S} \times \mathcal{A}$, it holds that

$$
\widetilde{Q}_{k, h}(x, a) \geq Q_{h}^{*}(x, a)
$$

Corollary 8. For every $(k, h, x) \in[K] \times[H] \times \mathcal{S}$, it holds that $\tilde{V}_{k, h}(x) \geq V_{h}^{*}(x)$.
Proof. Fix (k, h, x, a) where $k>1$ and $n_{k, h}(x, a)>0$ and let $t=n_{k, h}(x, a)$ which shares the same definition as that in Algorithm 2. Note that

$$
\begin{align*}
\widetilde{Q}_{k, h}(x, a) & =\left(1-\alpha_{t}\right) \widetilde{Q}_{\text {prev }(k), h}(x, a)+\alpha_{t}\left(R(x, a)+\widetilde{V}_{\text {prev }(k), h+1}\left(x_{\operatorname{prev}(k), h+1}\right)+\beta_{t}\right) \\
& =\cdots \\
& =\alpha_{t}^{0} \cdot \widetilde{Q}_{1, h}(x, a)+\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(R(x, a)+\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)\right)+\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i}, \tag{1}
\end{align*}
$$

where we have defined k_{i} and $\operatorname{prev}(k)$ as the episode when the i th time and the last time that state-action pair (x, a) was hit at the h th time step before the k th episode respectively and

$$
\alpha_{t}^{0} \stackrel{\text { def }}{=} \prod_{j=1}^{t}\left(1-\alpha_{j}\right), \quad \alpha_{t}^{i} \stackrel{\text { def }}{=} \prod_{j=i+1}^{t}\left(1-\alpha_{j}\right) \cdot \alpha_{i}
$$

Substracting both sides of (1) by $Q_{h}^{*}(x, a)$, we obtain

$$
\begin{align*}
\widetilde{Q}_{k, h}(x, a)-Q_{h}^{*}(x, a)= & \alpha_{t}^{0} \cdot\left(\widetilde{Q}_{1, h}(x, a)-Q_{h}^{*}(x, a)\right) \\
& +\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(R(x, a)+\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-Q_{h}^{*}(x, a)\right)+\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} \\
= & \alpha_{t}^{0} \cdot\left(\widetilde{Q}_{1, h}(x, a)-Q_{h}^{*}(x, a)\right)+\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right) \\
& +\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(V^{*}\left(x_{k_{i}, h+1}\right)-\left(\mathbb{P} V^{*}\right)(x, a)\right)+\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} \tag{2}
\end{align*}
$$

where in the last equality we have used the Bellman Optimality Equation $Q_{h}^{*}(x, a)=R(x, a)+\left(\mathbb{P} V_{h+1}^{*}\right)(x, a)$.
Lemma 9. α_{t}^{i} ’s satisfy the following properties (Lemma 4.1 of [2]):
(a) $\alpha_{t}^{0}=0$ and $\frac{1}{\sqrt{t}} \leq \sum_{i=1}^{t} \frac{\alpha_{t}^{i}}{\sqrt{i}} \leq \frac{2}{\sqrt{t}}$ for every $t \geq 1$,
(b) $\sum_{i=1}^{t}\left(\alpha_{t}^{i}\right)^{2} \leq \frac{2 H}{t}$ for every $t \geq 1$,
(c) $\sum_{t=i}^{+\infty} \alpha_{t}^{i}=1+\frac{1}{H}$ for every $i \geq 1$.

By event \mathcal{E}_{1} and Lemma 9 (b), we have $\left|\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(V^{*}\left(x_{k_{i}, h+1}\right)-\left(\mathbb{P} V^{*}\right)(x, a)\right)\right| \leq c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}$. Further by Lemma 9(a), we have $\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} \geq c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}} \geq \mid \sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(V^{*}\left(x_{k_{i}, h+1}\right)-\right.$ $\left.\left(\mathbb{P} V^{*}\right)(x, a)\right) \mid$. Using mathematical induction, we are able to show $\widetilde{Q}_{k, h}(x, a)-Q_{h}^{*}(x, a) \geq 0$ and conclude the proof of this lemma.

With optimistic guarantee, we can give a direct upper bound of \mathcal{R}_{K}^{π}. Note that

$$
\begin{aligned}
\mathcal{R}_{K}^{\pi} & =\sum_{k=1}^{K}\left(V_{1}^{*}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right) \\
& \leq \sum_{k=1}^{K}\left(\widetilde{V}_{k, 1}-V_{1}^{\pi_{k}}\right)\left(x_{k, 1}\right) \\
& =\sum_{k=1}^{K} \widetilde{\delta}_{k, 1}
\end{aligned}
$$

where we have defined $\widetilde{\delta}_{k, h} \stackrel{\text { def }}{=}\left(\widetilde{V}_{k, h}-V_{h}^{\pi_{k}}\right)\left(x_{k, h}\right)$.
The next step idea is to rewrite $\widetilde{\delta}_{k, h}$ using $\widetilde{\delta}_{k, h+1}$ and then use recursion to calculate an upper bound of $\sum_{k=1}^{K} \widetilde{\delta}_{k, h}$. We first show

Lemma 10. When $n_{k, h}\left(x_{k, h}, a_{k, h}\right)>0$, it holds that

$$
\begin{aligned}
\widetilde{\delta}_{k, h} \leq \sum_{i=1}^{t} & \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right)-\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right)+\widetilde{\delta}_{k, h+1} \\
& +2 c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}+\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right) .
\end{aligned}
$$

Proof. Note that

$$
\begin{align*}
\widetilde{\delta}_{k, h} & =\widetilde{V}_{k, h}\left(x_{k, h}\right)-V_{h}^{\pi_{k}}\left(x_{k, h}\right) \\
& =\widetilde{Q}_{k, h}\left(x_{k, h}, a_{k, h}\right)-Q_{h}^{\pi_{k}}\left(x_{k, h}, a_{k, h}\right) \\
& =\widetilde{Q}_{k, h}\left(x_{k, h}, a_{k, h}\right)-Q_{h}^{*}\left(x_{k, h}, a_{k, h}\right)+Q_{h}^{*}\left(x_{k, h}, a_{k, h}\right)-Q_{h}^{\pi_{k}}\left(x_{k, h}, a_{k, h}\right) . \tag{3}
\end{align*}
$$

Plugging (2) and $\alpha_{t}^{0}=0$ from Lemma 9(a) in (3), we obtain

$$
\begin{align*}
\widetilde{\delta}_{k, h}= & \sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right) \\
& +\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(V^{*}\left(x_{k_{i}, h+1}\right)-\left(\mathbb{P} V^{*}\right)(x, a)\right)+\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i}+Q_{h}^{*}\left(x_{k, h}, a_{k, h}\right)-Q_{h}^{\pi_{k}}\left(x_{k, h}, a_{k, h}\right) \\
\leq & \sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right)+\underbrace{Q_{h}^{*}\left(x_{k, h}, a_{k, h}\right)-Q_{h}^{\pi_{k}}\left(x_{k, h}, a_{k, h}\right)}_{(I)} \\
& +2 c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}} \tag{4}
\end{align*}
$$

where we have used $\sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(V^{*}\left(x_{k_{i}, h+1}\right)-\left(\mathbb{P} V^{*}\right)(x, a)\right) \leq c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}$ and $\sum_{i=0}^{t} \alpha_{t}^{i} \beta_{i} \leq$ $c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}$. Both of them have been proved in the analysis of Lemma 7.

We next take care of (I) and try to expand it. Notice that

$$
\begin{align*}
(I) & =\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right) \\
& =\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)+\widetilde{\delta}_{k, h+1}-\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right) . \tag{5}
\end{align*}
$$

The intuition to expand (I) in this way is that the expectation of $\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-\right.$ $\left.V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)$ equals 0 when it is conditioned on the history \mathcal{H}_{k} and $\left(x_{k, 1}, a_{k, 1}, \ldots, x_{k, h}\right)$.

Finally, plugging (5) back into (4), we prove this lemma.

Corollary 11.

$$
\begin{aligned}
& \sum_{k=1}^{K} \widetilde{\delta}_{k, h} \leq S A H+\sum_{k=1}^{K} \sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right)-\sum_{k=1}^{K}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right)+\sum_{k=1}^{K} \widetilde{\delta}_{k, h+1} \\
& +\sum_{k=1}^{K} 2 c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}+\sum_{k=1}^{K}\left(\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)\right) .
\end{aligned}
$$

Proof. When $n_{k, h}\left(x_{k, h}, a_{k, h}\right)=0$, we apply the naive upper bound i.e., $\widetilde{\delta}_{k, h} \leq H$. Let \mathcal{K} be the set of k 's such that $n_{k, h}\left(x_{k, h}, a_{k, h}\right)=0$. Note that $|\mathcal{K}| \leq S A$. So $\sum_{k \in \mathcal{K}} \widetilde{\delta}_{k, h} \leq S A H$. Together with Lemma 10 , we prove this corollary.

We next focus on bounding

$$
\begin{equation*}
\sum_{k=1}^{K} \sum_{i=1}^{t} \alpha_{t}^{i} \cdot\left(\widetilde{V}_{k_{i}, h+1}\left(x_{k_{i}, h+1}\right)-V^{*}\left(x_{k_{i}, h+1}\right)\right)-\sum_{k=1}^{K}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right) \tag{6}
\end{equation*}
$$

in Corollary 11 and show

Lemma 12.

$$
\text { (6) } \leq \frac{1}{H} \cdot\left(\sum_{k=1}^{K}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right)\right) .
$$

Proof. Recall $t=n_{k, h}\left(x_{k, h}, a_{k, h}\right)$. Rewrite (6) we have

$$
(6)=\sum_{i=1}^{n_{K, h}\left(x_{K, h}, a_{K, h}\right)}\left(\sum_{t=i+1}^{K} \alpha_{t}^{i}\right) \cdot\left(\widetilde{V}_{k_{i}, h+1}-V_{h+1}^{*}\right)\left(x_{k_{i}, h+1}\right)-\left(\sum_{k=1}^{K}\left(\widetilde{V}_{k, h+1}-V_{h+1}^{*}\right)\left(x_{k, h+1}\right)\right) .
$$

By Lemma 9(c), we have $\sum_{t=(i+1)}^{K} \alpha_{t}^{i} \leq 1+\frac{1}{H}$. Using aforementioned inequality, we are able to show this lemma.

By Corollary 11, Lemma 12 and the fact that $V_{h+1}^{*}(x) \geq V_{h+1}^{\pi_{k}}(x)$, we have

$$
\begin{aligned}
\sum_{k=1}^{K} \widetilde{\delta}_{k, h} \leq & S A H+\left(1+\frac{1}{H}\right) \cdot \sum_{k=1}^{K} \widetilde{\delta}_{k, h+1}+\sum_{k=1}^{K} 2 c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}} \\
& +\sum_{k=1}^{K}\left(\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)\right) .
\end{aligned}
$$

Hence by recursion, we further obtain

$$
\begin{align*}
\sum_{k=1}^{K} \widetilde{\delta}_{1, h} \leq & \left(1+\frac{1}{H}\right)^{H} \cdot\left(S A H^{2}+\sum_{h=1}^{H} \sum_{k=1}^{K} 2 c_{1} \sqrt{2} \cdot \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}\right. \\
& \left.+\sum_{h=1}^{H} \sum_{k=1}^{K}\left(\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)\right)\right) \\
\lesssim & S A H^{2}+\underbrace{\sum_{h=1}^{H} \sum_{k=1}^{K} \sqrt{\frac{H^{3} \ln (S A T / \delta)}{t}}}_{(*)} \\
& +\underbrace{\sum_{h=1}^{H} \sum_{k=1}^{K}\left(\left(\mathbb{P}\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\right)\left(x_{k, h}, a_{k, h}\right)-\left(V_{h+1}^{*}-V_{h+1}^{\pi_{k}}\right)\left(x_{k, h+1}\right)\right)}_{(* *)} . \tag{7}
\end{align*}
$$

Rewrite (*), we obtain

$$
(*)=\sqrt{H^{3} \ln (S A T / \delta)} \cdot \sum_{h=1}^{H} \sum_{(x, a)} \sum_{t=1}^{n_{K, h}(x, a)} \sqrt{\frac{1}{t}} .
$$

Further applying $\sum_{i=1}^{t} \frac{1}{i} \leq 2 \sqrt{t}$ and Cauchy-Schwarz inequality, we have

$$
\begin{align*}
(*) & \lesssim \sqrt{H^{3} \ln (S A T / \delta)} \cdot \sum_{(x, a)} \sum_{h=1}^{H} \sqrt{n_{K, h}(x, a)} \\
& \leq \sqrt{H^{3} \ln (S A T / \delta)} \cdot \sum_{(x, a)} \sqrt{H \cdot n_{K}(x, a)} \\
& =\mathcal{O}\left(H^{2} \sqrt{S A T \ln (S A T / \delta)}\right) \tag{8}
\end{align*}
$$

Let $\mathcal{E}_{2} \stackrel{\text { def }}{=}\left\{(* *) \leq c_{2} \sqrt{T H^{2} \ln \left(\delta^{-1}\right)}\right\}$, where c_{2} is a constant which will be defined later. By Azuma's inequality, we have there exists a constant c_{2} such that $\operatorname{Pr}\left(\mathcal{E}_{2}\right) \geq 1-\delta / 2$. According to event \mathcal{E}_{2}, it holds that

$$
\begin{equation*}
(* *) \leq c_{2} \sqrt{T H^{2} \ln \left(\delta^{-1}\right)} . \tag{9}
\end{equation*}
$$

Plugging (8) and (9) back into (7), we prove this theorem.

5 Probability Tools

Assuming $X_{0}=0$, a martingale $\left(X_{1}, \ldots, X_{t}\right)$ is \boldsymbol{c}-Lipschitz if $\left|X_{i}-X_{i-1}\right| \leq c_{i}$ where $\boldsymbol{c}=\left(c_{1}, \ldots, c_{t}\right)$. The following lemma states Azuma's inequality.

Lemma 13. ([1]) If a martingale $\left(X_{1}, \ldots, X_{t}\right)$ is \mathbf{c}-Lipschitz, define $X=X_{t}$, then for every $\epsilon \geq 0$, it holds that

$$
\operatorname{Pr}(|X-\mathbb{E} X| \geq \epsilon) \leq 2 \exp \left(-\frac{\epsilon^{2}}{2 \sum_{i=1}^{t} c_{i}^{2}}\right),
$$

where $\boldsymbol{c}=\left(c_{1}, \ldots, c_{t}\right)$.

References

[1] Fan Chung and Linyuan Lu. Concentration inequalities and martingale inequalities: a survey. Internet Mathematics, 3(1):79-127, 2006.
[2] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably efficient? In NeurIPS, pages 4863-4873, 2018.

