Notes of [2]

Chao Tao

Feb. 28, 2020

1 Problem Setup

There is a tabular episodic $\operatorname{MDP} \mathcal{M}=\left(\mathcal{S}, \mathcal{A}, \theta^{*}, R, H, s_{1}\right)$ where we assume the reward function R is bounded within $[0,1]$ and for simplicity we also assume R is deterministic. In other words, only the transition probability \mathbb{P} is unknown. We want to find a policy such that the expected regret incurred by this policy after K episodes is minimized.

2 Thompson Sampling

Like Optimism in the Face of Uncertainty, Thompson Sampling dating back to [3] is another general principal guiding you how to operate in a poorly understood environment. Due to its superior empirical performance [1], it gains increasing popularity recently. Thompson Sampling is a Bayesian method. Basically, at the very begining, the learner equipped with this policy assumes a prior distribution \mathcal{P}_{1} on the unknown parameter of the underlying environment i.e., θ^{*}. At the begining of each episode $k \geq 1$, the learner just samples a virtual environment from the posterior distribution \mathcal{P}_{k} on θ^{*} which is derived based on \mathcal{P}_{k-1} and the history in the $(k-1)$ th episode via Bayes' Theorem and then takes the optimal policy assuming the underlying model is the sampled one. The following pseudocode shows the aforementioned learning procedure.

```
Algorithm 1: Thompson Sampling
    initialization: prior distribution \(\mathcal{P}_{1}\)
    for episode \(k=1\) to \(K\) do
        compute posterior distribution \(\mathcal{P}_{k}=\mathcal{P}_{1} \mid \mathcal{H}_{k}\)
        sample \(\theta_{k}\) from \(\mathcal{P}_{k}\) and compute the optimal policy \(\pi_{k}\)
        for step \(h=1\) to \(H\) do
            observe state \(x_{k, h}\)
            take action \(a_{k, h}=\pi_{k}\left(x_{k, h}\right)\)
```

Denote the value function starting from time t under model M^{\prime} using policy π^{\prime} by $V_{\pi^{\prime}, t}^{M^{\prime}}$. Given a prior distribution \mathcal{P}_{1} on transition probability θ^{*}, the expected Bayesian regret is defined by

$$
\begin{equation*}
\mathcal{B} \mathcal{R}_{K}^{\pi} \stackrel{\text { def }}{=} \mathbb{E}_{\theta^{*} \sim \mathcal{P}_{1}}\left[\mathbb{E}\left[\sum_{k=1}^{K}\left(V_{*, 1}^{M^{*}}-V_{\pi_{k}, 1}^{M^{*}}\right)\left(x_{k, 1}\right) \mid \theta^{*}\right]\right], \tag{1}
\end{equation*}
$$

where the initial state for each episode can be either randomized or adversarial.

3 Notations and Definitions

$[n]$	$\{1,2, \ldots, n\}$
\mathcal{A}	action space
A	$\|\mathcal{A}\|$
\mathcal{S}	state space
S	$\|\mathcal{S}\|$
H	horizon
K	\# of episodes
T	HK
$R: \mathcal{S} \times \mathcal{A} \rightarrow[0,1]$	known reward function
$\theta^{*}: \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$	transition probability of the underlying MDP
$\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$	an arbitrary policy where π_{k} is the policy in the k th episode
$V_{\pi^{\prime}, t}^{M^{\prime}}$	value function starting from time t under model M^{\prime} using policy π^{\prime}
$x_{k, 1}$	initial state of the k th episode
$\left(x_{k, h}, a_{k, h}\right)$	state-action pair in the k th episode and at the h th time step
\mathcal{H}_{k}	history before the k th episode $\left(x_{1,1}, a_{1,1}, \ldots, x_{1, H+1}, \ldots, x_{k-1,1}, a_{k-1,1} \ldots, x_{k-1, H+1}\right)$
\mathcal{M}_{k}	sampled virtual model with transition probability θ_{k} right before the k-th episode
$N_{k}(x, a)$	number of hits of state-action pair (x, a) before the k th episode
ρ	an arbitrary transition probability
V	an arbitrary value function
$(\rho V)(x, a)$	$\sum_{y \in \mathcal{S}} \rho(y \mid x, a) V(y)$
$\mathcal{B} \mathcal{R}_{K}^{\pi}$	Bayesian regret incurred by policy π
\mathcal{P}_{k}	posterior distribution right before the k th episode

4 Theorem

In this lecture, we are going to show
Theorem 1. When $T \geq \sqrt{S A}$, the expected Bayesian regret i.e., (1) of Algorithm 1 is bouned by $\widetilde{\mathcal{O}}(H S \sqrt{A T})$.
Remark 2. The theorem holds for any prior distribution.
Proof. In the subsequent part, unless otherwise specified, the expectation operator is taken over all random variables. Note that θ^{*} is treated as a random variable. Rewrite $\mathcal{B} \mathcal{R}_{K}^{\pi}$ we have

$$
\begin{align*}
(1) & =\sum_{k=1}^{K} \mathbb{E}\left[\left(V_{*, 1}^{M^{*}}-V_{\pi_{k}, 1}^{M^{*}}\right)\left(x_{k, 1}\right)\right] \\
& =\sum_{k=1}^{K}\left(\mathbb{E}\left[\left(V_{*, 1}^{M^{*}}-V_{\pi_{k}, 1}^{M_{k}}\right)\left(x_{k, 1}\right)\right]+\mathbb{E}\left[\left(V_{\pi_{k}, 1}^{M_{k}}-V_{\pi_{k}, 1}^{M^{*}}\right)\left(x_{k, 1}\right)\right]\right) \\
& =\sum_{k=1}^{K} \mathbb{E}\left[\left(V_{*, 1}^{M^{*}}-V_{\pi_{k}, 1}^{M_{k}}\right)\left(x_{k, 1}\right)\right]+\sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k}\right], \tag{2}
\end{align*}
$$

where we have defined $\widetilde{\Delta}_{k} \stackrel{\text { def }}{=}\left(V_{\pi_{k}, 1}^{M_{k}}-V_{\pi_{k}, 1}^{M^{*}}\right)\left(x_{k, 1}\right)$.
Lemma 3. $\mathbb{E}\left[V_{*, 1}^{M^{*}}\left(x_{k, 1}\right)\right]=\mathbb{E}\left[V_{\pi_{k}, 1}^{M_{k}}\left(x_{k, 1}\right)\right]$.
Proof. Just note that

$$
\begin{aligned}
\mathbb{E}\left[V_{*, 1}^{M^{*}}\left(x_{k, 1}\right)\right] & =\mathbb{E}\left[\mathbb{E}\left[V_{*, 1}^{M^{*}}\left(x_{k, 1}\right) \mid \mathcal{H}_{k}\right]\right] \\
& =\mathbb{E}\left[\mathbb{E}\left[V_{\pi_{k}, 1}^{M_{k}}\left(x_{k, 1}\right) \mid \mathcal{H}_{k}\right]\right] \\
& =\mathbb{E}\left[V_{\pi_{k}, 1}^{M_{k}}\left(x_{k, 1}\right)\right] .
\end{aligned}
$$

Applying Lemma 3 in (2), we obtain

$$
(1)=\sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k}\right] \text {. }
$$

Next we focus on bounding $\widetilde{\Delta}_{k}$. Note that

$$
\begin{aligned}
\mathbb{E}\left[\widetilde{\Delta}_{k} \mid M^{*}, M_{k}\right]= & \mathbb{E}\left[\left(V_{\pi_{k}, 1}^{M_{k}}-V_{\pi_{k}, 1}^{M^{*}}\right)\left(x_{k, 1}\right) \mid M^{*}, M_{k}\right] \\
= & \mathbb{E}\left[\left(\theta_{k} V_{\pi_{k}, 2}^{M_{k}}\right)\left(x_{k, 1}, a_{k, 1}\right)-\left(\theta^{*} V_{\pi_{k}, 2}^{M^{*}}\right)\left(x_{k, 1}, a_{k, 1}\right) \mid M^{*}, M_{k}\right] \\
= & \mathbb{E}\left[\left(\left(\theta_{k}-\theta^{*}\right) V_{\pi_{k}, 2}^{M_{k}}\right)\left(x_{k, 1}, a_{k, 1}\right)+\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\left(x_{k, 2}\right) \mid M^{*}, M_{k}\right] \\
& +\mathbb{E}\left[\left(\theta^{*}\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\right)\left(x_{k, 1}, a_{k, 1}\right)-\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\left(x_{k, 2}\right) \mid M^{*}, M_{k}\right] \\
= & \mathbb{E}\left[\left(\left(\theta_{k}-\theta^{*}\right) V_{\pi_{k}, 2}^{M_{k}}\right)\left(x_{k, 1}, a_{k, 1}\right)+\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\left(x_{k, 2}\right) \mid M^{*}, M_{k}\right],
\end{aligned}
$$

where in the second last inequality we have used

$$
\mathbb{E}\left[\left(\theta^{*}\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\right)\left(x_{k, 1}, a_{k, 1}\right)-\left(V_{\pi_{k}, 2}^{M_{k}}-V_{\pi_{k}, 2}^{M^{*}}\right)\left(x_{k, 2}\right) \mid M^{*}, M_{k}\right]=0 .
$$

By recursion and law of total expectation, we derive

$$
\begin{align*}
\mathbb{E}\left[\widetilde{\Delta}_{k}\right] & =\sum_{t=1}^{H} \mathbb{E}\left[\left(\left(\theta_{k}-\theta^{*}\right) V_{\pi_{k}, t+1}^{M_{k}}\right)\left(x_{k, t}, a_{k, t}\right)\right] \\
& \leq \sum_{t=1}^{H} \mathbb{E}\left[\left\|\left(\theta_{k}-\theta^{*}\right)\left(x_{k, t}, a_{k, t}\right)\right\|_{1} \cdot\left\|V_{\pi_{k}, t+1}^{M_{k}}\right\|_{\infty}\right] \\
& \leq H \cdot \sum_{t=1}^{H} \mathbb{E}\left[\left\|\left(\theta_{k}-\theta^{*}\right)\left(x_{k, t}, a_{k, t}\right)\right\|_{1}\right] \tag{3}
\end{align*}
$$

where in the first inequality we have used Hölder's inequality and in the last inequality we apply $\left\|V_{\pi_{k}, t+1}^{M_{k}}\right\|_{\infty} \leq$ H.

Let $\bar{\theta}_{k}(\cdot \mid s, a)$ be the empirical transition probability before the k th episode. We define \mathcal{M}_{k} as the set of models such that its transition probability θ satisfies $\left|\bar{\theta}_{k}(\cdot \mid s, a)-\theta(\cdot \mid s, a)\right| \leq C \sqrt{\frac{S \ln (S A T)}{1 V N_{k}(s, a)}}$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$ where C is a universal constant which will be defined later. According to Theorem 4, we know that there exists a constant $C>0$ such that $\operatorname{Pr}\left(M_{k} \notin \mathcal{M}_{k}\right) \leq 1 / K$ and $\operatorname{Pr}\left(M^{*} \notin \mathcal{M}_{k}\right) \leq 1 / K$. Hence

$$
\begin{aligned}
(1) & =\sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k}\right] \\
& \leq \sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k} \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right]+H \cdot \sum_{k=1}^{K}\left(\operatorname{Pr}\left(M_{k} \notin \mathcal{M}_{k}\right)+\operatorname{Pr}\left(M^{*} \in \mathcal{M}_{k}\right)\right),
\end{aligned}
$$

according to $\widetilde{\Delta}_{k} \leq H$ and a union bound. Recall $\operatorname{Pr}\left(M_{k} \notin \mathcal{M}_{k}\right) \leq 1 / K$ and $\operatorname{Pr}\left(M^{*} \notin \mathcal{M}_{k}\right) \leq 1 / K$, we further obtain

$$
\begin{align*}
(1) & \lesssim \sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k} \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right] \\
& =\sum_{k=1}^{K} \mathbb{E}\left[\widetilde{\Delta}_{k} \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right] \tag{4}
\end{align*}
$$

Putting (3) back into (4), we have

$$
\begin{align*}
(1) & \lesssim \sum_{k=1}^{K} \mathbb{E}\left[\sum_{t=1}^{H}\left(\left(\theta_{k}-\theta^{*}\right) V_{\pi_{k}, t+1}^{M_{k}}\right)\left(x_{k, t}, a_{k, t}\right) \cdot \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right] \\
& \leq \sum_{k=1}^{K} \mathbb{E}\left[\sum_{h=1}^{H} C H \sqrt{\frac{S \ln (S A T)}{1 \vee N_{k}\left(x_{k, h}, a_{k, h}\right)}} \cdot \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right] \\
& =\mathbb{E}\left[C H \cdot \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{S \ln (S A T)}{1 \vee N_{k}\left(x_{k, h}, a_{k, h}\right)}} \cdot \mathbb{1}\left(M_{k} \in \mathcal{M}_{k}, M^{*} \in \mathcal{M}_{k}\right)\right], \tag{5}
\end{align*}
$$

where in the second last inequality we have used $\left|\bar{\theta}_{k}(\cdot \mid s, a)-\theta_{k}(\cdot \mid s, a)\right| \leq C \sqrt{\frac{S \ln (S A T)}{1 \vee N_{k}(s, a)}}$ and $\mid \bar{\theta}_{k}(\cdot \mid s, a)-$ $\theta^{*}(\cdot \mid s, a) \left\lvert\, \leq C \sqrt{\frac{S \ln (S A T)}{1 \vee N_{k}(s, a)}}\right.$ when $M_{k} \in \mathcal{M}_{k}$ and $M^{*} \in \mathcal{M}_{k}$.

Note that

$$
\begin{align*}
\sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{S \ln (S A T)}{1 \vee N_{k}\left(x_{k, h}, a_{k, h}\right)}} & \lesssim \sqrt{S \ln (S A T)} \cdot \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \sum_{t=0}^{N_{K}(s, a)} \sqrt{\frac{1}{1 \vee t}} \\
& \leq \sqrt{S \ln (S A T)} \cdot\left(\sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} 2 \sqrt{N_{K}(s, a)}+S A\right) \\
& \leq 2 S \sqrt{A T \ln (S A T)}=\widetilde{\mathcal{O}}(S \sqrt{A T}), \tag{6}
\end{align*}
$$

where in the third last inequality we have used $\sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \sqrt{N_{K}(s, a)} \leq \sqrt{S A T}$ which is due to CauchySchwarz inequality and $T \geq \sqrt{S A}$.

Putting (6) back into (5), we prove this theorem.

5 Tools

Theorem 4 ([4]). Let P be a probability distribution on the set $\mathcal{S}=\{1, \ldots, S\}$. Let $X_{1}, X_{2}, \ldots, X_{m}$ be i.i.d. random variables distributed according to P. Then, for all $\epsilon>0$, it holds that

$$
\operatorname{Pr}\left(\|P-\bar{P}\|_{1} \geq \epsilon\right) \leq\left(2^{S}-2\right) \exp \left(-m \epsilon^{2} / 2\right)
$$

where \bar{P} is the empirical estimation of P defined as $\bar{P}(i)=\frac{\sum_{j=1}^{m} 1\left(X_{j}=i\right)}{m}$.

References

[1] Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In NIPS, pages 22492257, 2011.
[2] Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling. In NIPS, pages 3003-3011, 2013.
[3] William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.
[4] Tsachy Weissman, Erik Ordentlich, Gadiel Seroussi, Sergio Verdu, and Marcelo J Weinberger. Inequalities for the 11 deviation of the empirical distribution. Hewlett-Packard Labs, Tech. Rep, 2003.

