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1 Problem Setup

There is a tabular episodic MDP M = (S,A, θ∗, R,H, s1) where we assume the reward function R is
bounded within [0, 1] and for simplicity we also assume R is deterministic. In other words, only the transi-
tion probability P is unknown. We want to find a policy such that the expected regret incurred by this policy
after K episodes is minimized.

2 Thompson Sampling

Like Optimism in the Face of Uncertainty, Thompson Sampling dating back to [3] is another general prin-
cipal guiding you how to operate in a poorly understood environment. Due to its superior empirical perfor-
mance [1], it gains increasing popularity recently. Thompson Sampling is a Bayesian method. Basically,
at the very begining, the learner equipped with this policy assumes a prior distribution P1 on the unknown
parameter of the underlying environment i.e., θ∗. At the begining of each episode k ≥ 1, the learner just
samples a virtual environment from the posterior distribution Pk on θ∗ which is derived based on Pk−1
and the history in the (k − 1)th episode via Bayes’ Theorem and then takes the optimal policy assuming
the underlying model is the sampled one. The following pseudocode shows the aforementioned learning
procedure.

Algorithm 1: Thompson Sampling

1 initialization: prior distribution P1
2 for episode k = 1 to K do
3 compute posterior distribution Pk = P1 | Hk
4 sample θk from Pk and compute the optimal policy πk
5 for step h = 1 to H do
6 observe state xk,h
7 take action ak,h = πk(xk,h)

Denote the value function starting from time t under model M ′ using policy π′ by VM ′
π′,t . Given a prior

distribution P1 on transition probability θ∗, the expected Bayesian regret is defined by

BRπK
def
= Eθ∗∼P1

[
E

[
K∑
k=1

(VM∗
∗,1 − VM∗

πk,1
)(xk,1) | θ∗

]]
, (1)

where the initial state for each episode can be either randomized or adversarial.
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3 Notations and Definitions

[n] {1, 2, . . . , n}
A action space
A |A|
S state space
S |S|
H horizon
K # of episodes
T HK
R : S ×A → [0, 1] known reward function
θ∗ : S ×A → ∆(S) transition probability of the underlying MDP
π = (π1, . . . , πK) an arbitrary policy where πk is the policy in the kth episode
VM ′
π′,t value function starting from time t under model M ′ using policy π′

xk,1 initial state of the kth episode
(xk,h, ak,h) state-action pair in the kth episode and at the hth time step
Hk history before the kth episode (x1,1, a1,1, . . . , x1,H+1, . . . , xk−1,1, ak−1,1 . . . , xk−1,H+1)
Mk sampled virtual model with transition probability θk right before the k-th episode
Nk(x, a) number of hits of state-action pair (x, a) before the kth episode
ρ an arbitrary transition probability
V an arbitrary value function
(ρV )(x, a)

∑
y∈S ρ(y | x, a)V (y)

BRπK Bayesian regret incurred by policy π
Pk posterior distribution right before the kth episode
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4 Theorem

In this lecture, we are going to show

Theorem 1. When T ≥
√
SA, the expected Bayesian regret i.e., (1) of Algorithm 1 is bouned by Õ(HS

√
AT ).

Remark 2. The theorem holds for any prior distribution.

Proof. In the subsequent part, unless otherwise specified, the expectation operator is taken over all random
variables. Note that θ∗ is treated as a random variable. Rewrite BRπK we have

(1) =

K∑
k=1

E
[
(VM∗
∗,1 − VM∗

πk,1
)(xk,1)

]
=

K∑
k=1

(
E
[
(VM∗
∗,1 − V

Mk
πk,1

)(xk,1)
]

+ E
[
(VMk
πk,1
− VM∗

πk,1
)(xk,1)

])
=

K∑
k=1

E
[
(VM∗
∗,1 − V

Mk
πk,1

)(xk,1)
]

+

K∑
k=1

E[∆̃k], (2)

where we have defined ∆̃k
def
= (VMk

πk,1
− VM∗

πk,1
)(xk,1).

Lemma 3. E[VM∗
∗,1 (xk,1)] = E[VMk

πk,1
(xk,1)].

Proof. Just note that

E[VM∗
∗,1 (xk,1)] = E[E[VM∗

∗,1 (xk,1) | Hk]]

= E[E[VMk
πk,1

(xk,1) | Hk]]

= E[VMk
πk,1

(xk,1)].

Applying Lemma 3 in (2), we obtain

(1) =

K∑
k=1

E[∆̃k].

Next we focus on bounding ∆̃k. Note that

E[∆̃k |M∗,Mk] = E[(VMk
πk,1
− VM∗

πk,1
)(xk,1) |M∗,Mk]

= E[(θkV
Mk
πk,2

)(xk,1, ak,1)− (θ∗VM∗
πk,2

)(xk,1, ak,1) |M∗,Mk]

= E[((θk − θ∗)VMk
πk,2

)(xk,1, ak,1) + (VMk
πk,2
− VM∗

πk,2
)(xk,2) |M∗,Mk]

+ E[(θ∗(VMk
πk,2
− VM∗

πk,2
))(xk,1, ak,1)− (VMk

πk,2
− VM∗

πk,2
)(xk,2) |M∗,Mk]

= E[((θk − θ∗)VMk
πk,2

)(xk,1, ak,1) + (VMk
πk,2
− VM∗

πk,2
)(xk,2) |M∗,Mk],
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where in the second last inequality we have used

E[(θ∗(VMk
πk,2
− VM∗

πk,2
))(xk,1, ak,1)− (VMk

πk,2
− VM∗

πk,2
)(xk,2) |M∗,Mk] = 0.

By recursion and law of total expectation, we derive

E[∆̃k] =
H∑
t=1

E[((θk − θ∗)VMk
πk,t+1)(xk,t, ak,t)]

≤
H∑
t=1

E
[
‖(θk − θ∗)(xk,t, ak,t)‖1 ·

∥∥∥VMk
πk,t+1

∥∥∥
∞

]
≤ H ·

H∑
t=1

E[‖(θk − θ∗)(xk,t, ak,t)‖1], (3)

where in the first inequality we have used Hölder’s inequality and in the last inequality we apply
∥∥∥VMk

πk,t+1

∥∥∥
∞
≤

H .
Let θ̄k(· | s, a) be the empirical transition probability before the kth episode. We defineMk as the set

of models such that its transition probability θ satisfies |θ̄k(· | s, a) − θ(· | s, a)| ≤ C
√

S ln(SAT )
1∨Nk(s,a)

for all
(s, a) ∈ S × A where C is a universal constant which will be defined later. According to Theorem 4, we
know that there exists a constant C > 0 such that Pr(Mk /∈ Mk) ≤ 1/K and Pr(M∗ /∈ Mk) ≤ 1/K.
Hence

(1) =

K∑
k=1

E[∆̃k]

≤
K∑
k=1

E[∆̃k1(Mk ∈Mk,M
∗ ∈Mk)] +H ·

K∑
k=1

(Pr(Mk /∈Mk) + Pr(M∗ ∈Mk)),

according to ∆̃k ≤ H and a union bound. Recall Pr(Mk /∈ Mk) ≤ 1/K and Pr(M∗ /∈ Mk) ≤ 1/K, we
further obtain

(1) .
K∑
k=1

E[∆̃k1(Mk ∈Mk,M
∗ ∈Mk)]

=
K∑
k=1

E[∆̃k1(Mk ∈Mk,M
∗ ∈Mk)] (4)

Putting (3) back into (4), we have

(1) .
K∑
k=1

E

[
H∑
t=1

((θk − θ∗)VMk
πk,t+1)(xk,t, ak,t) · 1(Mk ∈Mk,M

∗ ∈Mk)

]

≤
K∑
k=1

E

[
H∑
h=1

CH

√
S ln(SAT )

1 ∨Nk(xk,h, ak,h)
· 1(Mk ∈Mk,M

∗ ∈Mk)

]

= E

[
CH ·

K∑
k=1

H∑
h=1

√
S ln(SAT )

1 ∨Nk(xk,h, ak,h)
· 1(Mk ∈Mk,M

∗ ∈Mk)

]
, (5)
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where in the second last inequality we have used |θ̄k(· | s, a)−θk(· | s, a)| ≤ C
√

S ln(SAT )
1∨Nk(s,a)

and |θ̄k(· | s, a)−

θ∗(· | s, a)| ≤ C
√

S ln(SAT )
1∨Nk(s,a)

when Mk ∈Mk and M∗ ∈Mk.
Note that

K∑
k=1

H∑
h=1

√
S ln(SAT )

1 ∨Nk(xk,h, ak,h)
.
√
S ln(SAT ) ·

∑
(s,a)∈S×A

NK(s,a)∑
t=0

√
1

1 ∨ t

≤
√
S ln(SAT ) ·

 ∑
(s,a)∈S×A

2
√
NK(s, a) + SA


≤ 2S

√
AT ln(SAT ) = Õ(S

√
AT ), (6)

where in the third last inequality we have used
∑

(s,a)∈S×A
√
NK(s, a) ≤

√
SAT which is due to Cauchy-

Schwarz inequality and T ≥
√
SA.

Putting (6) back into (5), we prove this theorem.

5 Tools

Theorem 4 ([4]). Let P be a probability distribution on the set S = {1, . . . , S}. Let X1, X2, ..., Xm be
i.i.d. random variables distributed according to P . Then, for all ε > 0, it holds that

Pr(
∥∥P − P̄∥∥

1
≥ ε) ≤ (2S − 2) exp(−mε2/2),

where P̄ is the empirical estimation of P defined as P̄ (i) =
∑m

j=1 1(Xj=i)

m .
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