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1 Problem Setup

There is a tabular infinite undiscounted MDP M∗ = (S,A, θ∗, c, s1) where cost function c is bounded
within [0, 1] and s1 is the initial state which can be either randomized or adversarial. For simplicity, we
assume the cost function c is deterministic and known beforehand. In other words, only the transition
probability θ∗ is unknown. We want to find a policy such that the expected cost incurred by this policy after
T time steps is minimized.

In infinite undiscounted MDP, the expected average cost per step for any policy π is defined as

`π
def
= lim sup

T→+∞

1

T
· E

[
T∑
t=1

c(xt, at)

]
,

where xt and at denotes the state and action pair at the tth time step. Note that we have removed the
dependency on policy to simplify the notations. Let π∗ be the optimal policy such that `π∗ = minπ′ `π′ .
And the frequentist regret is defined by

RπT
def
=

T∑
t=1

c(xt, at)− T`π∗ .

1.1 Weakly Communicating MDP

To make it possible to suffer a sub-linear regret, we also need to make some restrictions on the underlying
MDP. Here, we assume the underlying MDP is weakly communicating.

Definition 1. An MDP is weakly communicating iff the state space S can be decomposed into two parts S1
and S2 such that every state in S1 is reachable from other states in S1 under some policy, whereas all states
in S2 are transient under all policies.

Remark 1. A state s ∈ S is said transient if upon entering the state, the MDP will never return back to it
in the future. More precisely, let s1 = s and Ts = inft{t ≥ 1 : xt = s} be the first time the MDP returns
back to s. It holds that Pr(Ts = +∞) = 1.

The intuition to introduce such a concept is to avoid trap states. For example we can construct an MDP
as the following (see Figure 1):

i. S = {s1, s2}
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ii. A = {a1, a2}

iii. θ∗(s1 | s1, a1) = 1, θ∗(s2 | s1, a2) = 1, θ∗(s2 | s2, a1) = 1, θ∗(s2 | s2, a2) = 1

iv. c(s1, a1) = 0.5, c(s1, a2) = 1, c(s2, a1) = 1, c(s2, a2) = 1

v. x1 = s1

s1 s2a1/0.5
a2/1

a1, a2/1

Figure 1: A counterexample

It is clear that the optimal policy is π∗ = a1. However, no policy could achieve o(T ). We prove this
by contradiction. Suppose such a policy exists. We call it π′. Then during the first T/2 steps, it must not
try action a2. Otherwise, the regret would be at least 0.25T = Ω(T ). A key observation is that when we
change the transition probability to the following case,

s1 s2a2/0.5
a1/1

a1, a2/1

Figure 2: Counterexample with Changed Transition Probability

π′ will not change its behavior in the first T/2 steps since it does not even try action a2. Note that during
the second T/2 steps, it will get stuck in state s2 and this incurs a Ω(T ) regret. A contradiction happens.

1.2 Optimality

Theorem 2. There always exists a stationary deterministic policy π∗ achieving the optimal expected average
cost and its expected average cost satisfies

`M
∗

π∗ + v(x, θ∗) = min
a∈A

{
c(x, a) +

∑
x′∈S

θ∗(x′ | x, a)v(x′, θ∗)

}
,

where v(·, θ∗) is called the bias vector of MDP M∗.

It is easy to see if v(·, θ∗) is a bias vector of model M∗, so does v(·, θ∗) − C where C is an arbitrary
constant. Hence w.l.o.g., we assume minx∈S v(x, θ∗) = 0. We also assume maxx∈S v(x, θ∗) ≤ D′.

Remark 3. We only assume the existence of D′. We do not assume D′ is known beforehand.

From now on, we assume the underlying unknown MDP is weakly communicating and its bias vector is
upper bounded by D′ and only need to consider stationary deterministic policies.
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2 Thompson Sampling

Like Optimism in the Face of Uncertainty, Thompson Sampling dating back to [3] is another general prin-
cipal guiding you how to operate in a poorly understood environment. Due to its superior empirical perfor-
mance [1], it gains increasing popularity recently.

Thompson Sampling is a Bayesian method. Basically, at the very begining, the learner equipped with
this policy assumes a prior distribution P1 on the unknown parameter of the underlying environment i.e.,
θ∗. At the begining of each episode k ≥ 1, the learner just samples a virtual environment from the posterior
distribution Pk on θ∗ which is derived based on Pk−1 and the history in the (k − 1)th episode via Bayes’
Theorem and then takes the optimal policy assuming the underlying model is the sampled one.

To apply Thompson Sampling, we need to design a stopping criteria for each episode. Before describing
the stopping criteria, we introduce several notations. Let tk and Tk denote the start time and the length of
the kth episode respectively. Also let Nt(x, a) be the number of visits of state-action pairs before time step
t.

In the algorithm we are going to talk about, episode k finishes if one of the following situation happens:

i. t− tk > Tk−1 or

ii. ∃(x, a) ∈ S ×A, s.t., Nt(x, a) > 2Ntk(x, a).

The details are decribed in the following Algorithm 1.

Algorithm 1: Thompson Sampling

1 initialization: prior distribution P1, start of episode k = 1 and start time t = 1
2 while t ≤ T do
3 tk = t // start time of kth episode
4 compute posterior distribution Pk = P1 | Htk
5 sample θk from Pk and compute the optimal policy πk
6 while t ≤ T and t− tk ≤ Tk−1 and Nt(x, a) ≤ 2Ntk(x, a) ∀(x, a) ∈ S ×A do
7 observe state xt and take action at according to policy πk
8 t = t+ 1

9 k = k + 1

Given a prior distribution P1 on transition probability θ∗, the expected Bayesian regret is defined by

BRπT
def
= Eθ∗∼P1 [E [RπT | θ∗]] . (1)
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3 Notations and Definitions

[n] {1, 2, . . . , n}
A action space
A |A|
S state space
S |S|
T horizon of the MDP
c : S ×A → [0, 1] known cost function
θ∗ : S ×A → ∆(S) transition probability of the underlying MDP
πk policy in the kth episode
x1 initial state
(xt, at) state-action pair at the tth time step
Ht history before the tth time step (x1, a1, . . . , xt−1, at−1, xt)
Nt(x, a) number of hits of state-action pair (x, a) before the tth time step
tk start time of the kth episode
Tk length of the kth episode
Pk posterior distribution right before the kth episode
BRπT Bayesian regret incurred by policy π
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4 Theorem

In this lecture, we are going to show

Theorem 4. The expected Bayesian regret i.e., (1) incurred by Algorithm 1 is bouned by Õ(D′S
√
AT ).

Remark 5. The theorem holds for any prior distribution.

Proof. In the subsequent part, unless otherwise specified, the expectation operator is taken over all random
variables. Note that θ∗ is treated as a random variable. Let K be the random variable denoting the total
number of episodes. W.o.l.g., we assume tK+1 = T + 1. Rewrite BRπT we have

(1) = E

 K∑
k=1

tk+1−1∑
t=tk

c(xt, at)

− T · E[`M
∗

π∗ ]

= E

 K∑
k=1

tk+1−1∑
t=tk

[
`Mk
πk

+ v(xt, θk)−
∑
x′∈S

θk(x
′ | xt, at)v(x′, θk)

]− T · E[`M
∗

π∗ ]

= E

 K∑
k=1

tk+1−1∑
t=tk

`Mk
πk

− T · E[`M
∗

π∗ ]

︸ ︷︷ ︸
(I)

+E

 K∑
k=1

tk+1−1∑
t=tk

(v(xt, θk)− v(xt+1, θk))


︸ ︷︷ ︸

(II)

+ E

 K∑
k=1

tk+1−1∑
t=tk

[
v(xt+1, θk)−

∑
x′∈S

θk(x
′ | xt, at)v(x′, θk)

]
︸ ︷︷ ︸

(III)

, (2)

where in the second last equality we have applied Theorem 2.
In the following part, we will try to bound (I), (II) and (III) separately.

Lemma 6. (I) ≤ E[K].

Proof. First we note that

(I) = E

[
K∑
k=1

Tk`
Mk
πk

]
− T · E[`M

∗
π∗ ]

= E

[
K∑
k=1

E[Tk`
Mk
πk
| Htk ]

]
− T · E[`M

∗
π∗ ]

≤ E

[
K∑
k=1

E[(Tk−1 + 1)`Mk
πk
| Htk ]

]
− T · E[`M

∗
π∗ ],

where in the last inequality we have used Tk ≤ Tk−1 + 1 which is enforced by the algorithm. Since
conditioned on Htk , Tk−1 is a constant, we have E[(Tk−1 + 1)`Mk

πk
| Htk ] = (Tk−1 + 1)E[`Mk

πk
| Htk ].

5



Further utilizing the relation that θk | Htk = θ∗ | Htk , we derive

(I) ≤ E

[
K∑
k=1

(Tk−1 + 1)E[`M
∗

π∗ | Htk ]

]
− T · E[`M

∗
π∗ ]

= E

[
K∑
k=1

(Tk−1 + 1)`M
∗

π∗

]
− T · E[`M

∗
π∗ ]

≤ E[K`M
∗

π∗ ] ≤ E[K],

where the last inequality is due to `M
∗

π∗ ≤ 1.

Lemma 7. (II) ≤ D′E[K].

Proof. Just note that

(II) = E

 K∑
k=1

tk+1−1∑
t=tk

(v(xt, θk)− v(xt+1, θk))


= E

[
K∑
k=1

(v(xtk , θk)− v(xtk+1
, θk))

]
≤ D′E[K],

where in the last inequality is due to 0 ≤ v(·, θk) ≤ D′.

Putting Lemma 6 and Lemma 7 together, we get (I)+(II) ≤ (D′+1)E[K]. We next take care of E[K]
and try to give an upper bound of the expected number of episodes.

Lemma 8. E[K] = O(
√
SAT ln(T )).

Proof. According to the stopping condition, we divide K episodes into M meta episodes such that within
meta episode ẽm, except for the last episode, all the other episodes end due to the first condition i.e., t −
tk > Tk−1, which means Tk = Tk−1 + 1. Let τm be the start episode of meta episode τm. And we set
τM+1 = K + 1.

Hence for any meta episode ẽm, the total number of time steps
∑τm+1−1

k=τm
Tk satisfies

∑τm+1−1
k=τm

Tk ≥∑τm+1−2
k=τm

(Tτm +k− τm) = (τm+1− τm−1)(2Tτm + τm+1− τm−2)/2. Since Tτm ≥ 1, we further derive

τm+1 − τm ≤ 1 +
√

2
∑τm+1−1

k=τm
Tk ≤ 2

√
2
∑τm+1−1

k=τm
Tk. Next by Cauchy-Schwarz inequality, we get

K = τM+1 − 1 =
M∑
m=1

(τm+1 − τm) ≤
M∑
m=1

2

√√√√2

τm+1−1∑
k=τm

Tk ≤
√

8MT.

Note that M is at most the total number of episodes which ends due to visit number of state-action pair
doubles. Hence M = O(SA lnT ). Using this inequality, we prove K = O(

√
SAT lnT ) and finishes the

proof of this lemma.
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In the remaining part of the proof, we focus on bounding (III). Expand v(xt+1, θk) we derive

(III) = E

 K∑
k=1

tk+1−1∑
t=tk

[∑
x′∈S

θ∗(x′ | xt, at)v(x′, θk)−
∑
x′∈S

θk(x
′ | xt, at)v(x′, θk)

] .
Since v(·, ·) ≤ D′, further by Hölder’s inequality, we have

(III) ≤ D′E

 K∑
k=1

tk+1−1∑
t=tk

‖θ∗(· | xt, at)− θk(· | xt, at)‖1

 .
Let θ̄k(· | x, a) be the empirical transition probability before the kth episode. We defineMk as the set

of models such that its transition probability θ satisfies
∥∥θ̄k(· | x, a)− θ(· | x, a)

∥∥
1
≤ C

√
S ln(SAT )
1∨Ntk

(x,a) for all
(x, a) ∈ S × A where C is a universal constant which will be defined later. According to Theorem 9, we
know that there exists a constant C > 0 such that Pr(Mk /∈Mk) ≤ 1/T and Pr(M∗ /∈Mk) ≤ 1/T .

Plugging in events Mk ∈Mk,M
∗ ∈Mk, we get

(III) ≤ D′E

 K∑
k=1

tk+1−1∑
t=tk

‖θ∗(· | xt, at)− θk(· | xt, at)‖1 · 1(Mk ∈Mk,M
∗ ∈Mk)


+D′E

 K∑
k=1

tk+1−1∑
t=tk

1(Mk /∈Mk,M
∗ /∈Mk)



≤ D′E


K∑
k=1

tk+1−1∑
t=tk

C

√
S ln(SAT )

1 ∨Ntk(xt, at)︸ ︷︷ ︸
(∗)

+D′ E

 K∑
k=1

tk+1−1∑
t=tk

1(Mk /∈Mk,M
∗ /∈Mk)


︸ ︷︷ ︸

(∗∗)

. (3)

Note that for any tk ≤ t < tk+1, we have Nt(x, a) ≤ 2Ntk(x, a) holds for any state-action pair (x, a).

Hence (tk+1 − tk)
√

1
1∨Ntk

(s,a) ≤ 2 ·
∑Ntk+1−1(x,a)

t=Ntk
(x,a)

√
1

1∨t . Using this inequality in (∗), we have

(∗) ≤
K∑
k=1

tk+1−1∑
t=tk

C

√
S ln(SAT )

1 ∨Ntk(xt, at)

≤ 2C ·
K∑
k=1

tk+1−1∑
t=tk

√
S ln(SAT )

1 ∨Nt(xt, at)

= 2C ·
T∑
t=1

√
S ln(SAT )

1 ∨Nt(xt, at)

= 2C
√
S ln(SAT ) ·

∑
(x,a)

NT (x,a)∑
t=0

√
1

1 ∨ t
.
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Since
∑t′

t=0

√
1

1∨t ≤ 2
√
t′ + 1, we further derive (∗) ≤ 2C

√
S ln(SAT ) · (SA +

∑
(x,a)

√
NT (x, a)) ≤

2C
√
S ln(SAT ) · (SA +

√
SAT ) = O(S

√
AT ln(SAT )), where the second last inequality is due to

Cauchy-Schwarz inequality and the last inequality is due to T ≥
√
SA.

Recall that Pr(Mk /∈Mk) ≤ 1/T and Pr(M∗ /∈Mk) ≤ 1/T . Hence we have

(∗∗) = E

 K∑
k=1

tk+1−1∑
t=tk

E[1(Mk /∈Mk,M
∗ /∈Mk)]


≤ E

 K∑
k=1

tk+1−1∑
t=tk

(Pr(Mk /∈Mk) + Pr(M∗ /∈Mk))


≤ 2. (4)

Plugging in inequality (∗) ≤ O(S
√
AT ln(SAT )) and (4) back to (3), we get

(III) ≤ O(D′A
√
AT ln(SAT )). (5)

Putting Lemma 6, Lemma 7, Lemma 8 and (5) together, we prove this theorem.

5 Tools

Theorem 9 ([4]). Let P be a probability distribution on the set S = {1, . . . , S}. Let X1, X2, ..., Xm be
i.i.d. random variables distributed according to P . Then, for all ε > 0, it holds that

Pr(
∥∥P − P̄∥∥

1
≥ ε) ≤ (2S − 2) exp(−mε2/2),

where P̄ is the empirical estimation of P defined as P̄ (i) =
∑m

j=1 1(Xj=i)

m .
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