from typing import Optional
import numpy as np
from banditpylib.arms import PseudoArm
from banditpylib.data_pb2 import Context, Actions, Feedback
from banditpylib.learners import Goal, MakeAllAnswersCorrect
from .utils import ThresholdingBanditLearner
[docs]class APT(ThresholdingBanditLearner):
"""Anytime Parameter-free Thresholding algorithm
:cite:`DBLP:conf/icml/LocatelliGC16`
:param int arm_num: number of arms
:param float theta: threshold
:param float eps: radius of indifferent zone
:param Optional[str] name: alias name
"""
def __init__(self,
arm_num: int,
theta: float,
eps: float,
name: Optional[str] = None):
super().__init__(arm_num=arm_num, name=name)
self.__theta = theta
self.__eps = eps
def _name(self) -> str:
return 'apt'
[docs] def reset(self):
self.__pseudo_arms = [PseudoArm() for arm_id in range(self.arm_num)]
# Current time step
self.__time = 1
def __metrics(self) -> np.ndarray:
"""
Returns:
metrics of apt for each arm
"""
metrics = np.array([
np.sqrt(arm.total_pulls) *
(np.abs(arm.em_mean - self.__theta) + self.__eps)
for arm in self.__pseudo_arms
])
return metrics
[docs] def actions(self, context: Context) -> Actions:
actions = Actions()
arm_pull = actions.arm_pulls.add()
if self.__time <= self.arm_num:
arm_pull.arm.id = self.__time - 1
else:
arm_pull.arm.id = int(np.argmin(self.__metrics()))
arm_pull.times = 1
return actions
[docs] def update(self, feedback: Feedback):
arm_feedback = feedback.arm_feedbacks[0]
self.__pseudo_arms[arm_feedback.arm.id].update(
np.array(arm_feedback.rewards))
self.__time += 1
@property
def goal(self) -> Goal:
answers = [
1 if arm.em_mean >= self.__theta else 0 for arm in self.__pseudo_arms
]
return MakeAllAnswersCorrect(answers=answers)