from typing import Optional
import numpy as np
from banditpylib.arms import PseudoArm
from banditpylib.data_pb2 import Context, Actions, Feedback
from .utils import MABLearner
[docs]class EpsGreedy(MABLearner):
r"""Epsilon-Greedy policy
With probability :math:`\frac{\epsilon}{t}` do uniform sampling and with the
remaining probability play the arm with the maximum empirical mean.
:param int arm_num: number of arms
:param float eps: epsilon
:param Optional[str] name: alias name
"""
def __init__(self,
arm_num: int,
eps: float = 1.0,
name: Optional[str] = None):
super().__init__(arm_num=arm_num, name=name)
if eps <= 0:
raise ValueError('Epsilon is expected greater than 0. Got %.2f.' % eps)
self.__eps = eps
def _name(self) -> str:
return 'epsilon_greedy'
[docs] def reset(self):
self.__pseudo_arms = [PseudoArm() for arm_id in range(self.arm_num)]
# Current time step
self.__time = 1
[docs] def actions(self, context: Context) -> Actions:
del context
actions = Actions()
arm_pull = actions.arm_pulls.add()
if self.__time <= self.arm_num:
arm_pull.arm.id = self.__time - 1
# With probability eps/t, randomly select an arm to pull
elif np.random.random() <= self.__eps / self.__time:
arm_pull.arm.id = np.random.randint(0, self.arm_num)
else:
arm_pull.arm.id = int(
np.argmax(np.array([arm.em_mean for arm in self.__pseudo_arms])))
arm_pull.times = 1
return actions
[docs] def update(self, feedback: Feedback):
arm_feedback = feedback.arm_feedbacks[0]
self.__pseudo_arms[arm_feedback.arm.id].update(
np.array(arm_feedback.rewards))
self.__time += 1